Program Name: M. Sc. Applied Statistics & Analytics

PROGRAM OUTCOMES:

- 1. On completion of this program, a student would build a strong foundation for theoretical and conceptual understanding of Applied Statistics as well as Analytics domain.
- 2. Students will be introduced to fundamental ideas and techniques of data modeling, with an emphasis on the applications.
- 3. Students will be able to handle big data, clean and process it
- 4. They will be able to use appropriate models for analysis, derive business insights from the results.
- 5. They will be able to apply computing theory in different software and languages.
- 6. They will be able to perform well in group and develop professional presentation skills.
- 7. They will develop leadership skills and instill a sense of ethical decision making that will be beneficial to the organization and the communities they serve.

PROGRAM SPECIFIC OUTCOMES:

We offer electives as Marketing Analytics and Quality Management. Also courses on Organizational Behaviour, Leadership skills and Project Management/ Change Management are offered as a part of the curriculum.

- 1. Understand and critically apply the concepts and methods of Marketing Analytics, Quality Management
- 2. Identify, model and solve decision problems in different settings using machine learning techniques and data mining.
- 3. To understand systematic approach of dealing with the transition or transformation of an organization's goals, processes or technologies.

Year	Semester	Course	Expected outcomes
Ι	Ι	Probability Models for	1. To be able to quantify uncertainty
		Data Analytics	about events using mathematical
			descriptions of probability models.
			2. To be able to identify appropriate
			probability models for
			experiments/data involving
			univariate and multivariate random
			variables.
			3. Should be able to understand and use
			different probability models.
		Modern Statistical	1. Gain knowledge of theory of modern
		Inference	statistical inference.
			2. Develop ability to apply the results of
			modern statistical inference, develop
			theoretical as well as algorithmic
			understanding

COURSE OUTCOMES

1		r	
		3.	Students can apply Bayesian
			computation and re-sampling
			methods.
		4.	Gain knowledge of multiple testing
			procedure and ability to apply them
			for real problems.
	Design of Experiments	1.	Students will be able to understand
			planning and conducting the
			experiment and analysing the data
			collected through the experiment.
	Stochastic Models for	1.	State the defining properties of
	Analytics		various stochastic process models
	5		and identify appropriate stochastic
			process model(s) for a given applied
			problem in analytics.
		2.	Apply Markov chains in discrete- and
			continuous-time to solve inventory
			and queueing problems.
		3.	Apply the theory to model real
			phenomena and answer some
			questions in applied sciences and
			analytics.
	Statistical Computing I	1.	Simulate data from various
	(Practical)		univariate and bivariate distributions
			and study their properties
			empirically.
		2.	Compare resampling methods and
			iterative algorithms for estimation of
			parameters of an underlying
			distribution.
		3.	Apply various designs studied in
			theory to real life data sets coming
			from pharmaceutical, clinical or
			manufacturing industries.
		4.	Understand the use of different
			stochastic processes to model
			insurance and stock market data.
	Statistical Computing II	1.	Ability to handle data related
	(Base SAS and SOL)		problem using Base SAS Software
			along with SQL.
		2.	Ability to read, write and manipulate
			the data.
		3.	Ability to run standard procedures of
			SAS necessary for data preparation.
	Organizaional	1.	Awareness about basics of an
	Behaviour I		organization
		2.	Understanding of purpose and
			importance of behavioural skills in
 1		1	1

		3	Application through assignments
		5.	and/or class-room participation of
			key skills to improve the students'
			abills of operating in a group
TT		1	skins of operating in a group.
11	Generalized Linear	1.	To carry out multiple linear
	Models		regression analysis and give an
			account of the idea of generalizing
			of linear modelling.
		2.	To apply different methods for the
			estimation and variable selection and
			find the right link function.
		3.	To apply inference to general linear
			models.
		4	To be able to interpret the results in
			practical examples
	Financial Econometrics	1	Use the standard asset priging
	Financial Econometrics	1.	Use the standard asset pricing
		2.	Investigate market interdependence
		3.	Estimate using linear time series and
			volatility models.
		4.	Forecast financial data using high-
			level econometric techniques and
			measure their effectiveness.
		5.	Use CAPM models and connect
			individual returns to market return.
		6.	Do portfolio analysis.
		7.	Do high frequency data analysis from
			financial markets.
	Applied Multivariate	1.	A student will be able to understand
	Data Analysis		and explain what multivariate
	5		statistical analysis is and when its
			application is appropriate
		2	He will be introduced to several
		2.	useful multivariate techniques
			making strong use of illustrative
			making strong use of musuative
			examples. The student will have
			knowledge about how to build high
			end unsupervised learning model.
	Survival Analysis	1.	Understand the basic theoretic and
			applied principles of survival
			analysis.
		2.	Analyze survival data using
			appropriate statistical software.
		1	A 1 * * . 1 *
	Statistical Computing	1.	Apply various regression techniques
	111		to analyze different data sets.
		2.	Dimension reduction by using
			multivariate techniques.
		3.	Applications of survival analysis to
			model lifetime data, financial data

			 etc. 4. Understand the use of different univariate and multivariate time series models to model insurance, stock market data and forecasting.
		Statistical Computing IV (Python)	 Ability to handle a statistical analysis situation from the software perspective. Ability to read, write and manipulate the data. Ability to run statistical analysis.
		Organizational Behaviour II	1. The student develops awareness about basics of leadership in organizations and understanding of basic leadership behavioural skills in organization life.
Π	III	Introduction to Machine Learning Techniques	 The student is well versed with several fundamental concepts and methods for machine learning techniques and is familiar with some basic & industry specific learning algorithms and their applications in day to day real life. Students will be able to understand advantage of machine learning techniques over traditional predictive modelling.
		High Performance Data Mining	 At end of the course the students will develop understanding of high-end machine learning algorithm that is widely accepted across any industry. The student will be well conversant with high performance data mining approach that is mostly applicable in Data Science / Big Data industry.
		Financial Analytics	1. On successful completion of the course, students will be able to analyse economic and financial data using statistical models. Emphasis will be placed on model fitting and interpretation.
		Marketing Analytics	 To develop ability to handle a marketing problem with data insights and provide effective course of analysis. The student will be able to perform

			descriptive analysis, segmentation, survival analysis, customer lifetime value calculations, RFM analysis sentiment analysis and social network analysis.
	Computational Biology	1.	The student will develop ability to apply sequence analysis methods and to perform – profile searches, RNA structure analysis and Phylogenetic inference.
	Quality Management	1.	Students should be able to use a set of quality management methods, mainly empirical, statistical methods to improve the process management of a project.
	Statistical Computing V	1.	After doing this course, the students will be able to apply various machine learning techniques to solve real life problems faced by various industries/ sectors.
	Statistical Computing VI (HADOOP)	1. 2.	StudentswillgetpracticalintroductiontoBigDataManagement-ToolsandTechniquesStudents will be able to select toolsandandputarchitectureinplacefor
			solving specific Big Data processing problems.
	Project Management	1.	To understand project management design, development, and deployment
		2. 3.	Learn to align critical resources for effective project implementation To understand the implications, challenges, and opportunities of organizational dynamics in project management.
IV	Internship (Industry)	1. 2. 3.	Gain work experience and bridge the gap between academia and industry. Improve the students' employability prospects. Students will develop skills and
			advance their professional portfolios while also contributing to the goals and outcomes of the company.