
Mathematical Modeling of Viral Epidemics: A Review

Mathematical models to describe transmission and propagation of diseases have gained momentum over 

the last hundred years. Formulated mathematical models are currently applied to understandthe 

epidemiology of various diseases including viral diseases viz Influenza, SARS, measles, etc. With the 

emergence of advanced computing tools, designing mathematical models and generating simulations 

(numerical solutions) have become feasible. There is an enormous scope for using mathematical models in 

studying epidemiology of viral diseases through transmission dynamics of outbreaks and in evaluating or 

predicting the effects of interventions and vaccinations. The influenza pandemic of 2009 and the recent 

Ebola epidemics of 2014-15 have generated renewed interest in mathematical modelling of epidemics. 

Here we present a review of the various mathematical models and their applications in the study of virus 

driven epidemics.
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INTRODUCTION

Mathematics has made significant inroads 

in biology and medicine with 

mathematical theories and models being 

used to study and understand various 

processes or phenomenon including 

transmission dynamics of diseases 

(Abidoret al., 1979; Anderson, 1991; 

Aronson et al., 1975; Ball et al., 2010; 

Beirne, 1975; Bowman et al., 2005; 

Carrillo et al., 2010; Chowell et al., 2006a; 

2006b; Cohen et al., 2004; Hodgkin et al., 

1952; Kermack et al., 1927; Krassowska et 

al., 1994; Meena et al., 2010; Michaelis et 

al., 1913; Mishra et al., 2010; Shil et al., 

2008; Smith et al., 2004; Yousfi et al., 

2011). The progress of mathematical 

sciences including geometry, algebra and 

analyses over the last few centuries has 

enriched different branches of biological 

sciences. Simultaneously, conceptual and 

scientific challenges from biology have 

enriched mathematics by leading to 

innovative thought and development of 

novel approaches to mathematical 

theories. Several pioneering examples 

include age structure of stable populations 

by Euler 1760 AD, correlation coefficient 

by Pearson 1903 AD, Markov chains and 
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statistics of language by Markov 1906, 

dynamics of interacting species by Lotka 

1925, game theory by Neumann and 

Morgenstern 1953, diffusion for gene 

frequencies by Kimura 1994 (Cohen, 

2004). The pandemic caused by the novel 

Influenza A/H1N1 2009 and more recent 

Ebola epidemic have resulted in a renewed 

interest in mathematical modelling of 

epidemics (Chowell et al., 2014; Fraseret 

al., 2009; Lewnard et al., 2014).

Mathematical theories and models are 

used to analyze both data and new ideas in 

epidemiology. The process of scientific 

progress is to observe a phenomenon, 

generate a hypothesis and design 

experiments to test the hypothesis. 

Experiments in epidemiology are difficult 

to design, with serious ethical issues. A 

mathematical model, on the other hand, is 

a description of a phenomenon or situation 

based on a hypothesis. The general process 

involve certain assumptions on disease 

propagation, formulation of the 

assumptions in mathematical terms and 

translation into a mathematical problem. 

The mathematical problem then becomes 

the model for the epidemic. The numerical 

solution of the models can be obtained by 

computer simulations and the 

outputcompared with the real data. Also, 

the real data can be fitted to a model to 

deduce several parameters (Brauer, 2009).

The first mathematical model in 

epidemiology was developed to study the 

variolation against small pox in increasing 

life expectancy by Bernouli (Brauer, 2009; 

Bernouli, 1760).  The foundation of 

mathematical epidemiology was laid by 

the contribution of several biologists and 

physicians as P. D. Enko, W. H. Hamer, Sir 

R. A. Ross, A. G. McKendrick and W.O. 

Kermack. The works of Ross on malaria 

(Ross, 1911) and Kermack and 

McKendrick (Kermack et al., 1933) are 

considered as landmarks in the 

development of mathematical 

epidemiology. Ross, based on his 

extensive research on malaria in India, 

showed that the disease was spread by the 

mosquitoes and developed a model 

describing the transmission (Ross, 1911). 

He predicted from this model that 

reduction of the mosquito population 

would effectively control the malaria 

epidemic in a geographical area. Further, 

several disease specific modelling studies 

including measles, gonorrhea, AIDS, 

leprosy (Allen et al., 1990; Anderson, 

1991; Castillo–Chavez et al., 1989; Gupte 

et al., 2000; Hethcote et al., 1984; Meima 

et al., 1999).

The concept of basic reproduction 

number was developed in the works of 
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Kermack and McKendrick (Kermack, et 

al. 1933). The authors analysed disease 

propagation in: i) diseases where the 

infected person recovers and gets 

conferred immunity against the causative 

agent (viral diseases) and ii) diseases with 

recovery but without conferred immunity 

against the causative agent (bacterial and 

sexually transmitted diseases). The basic 

reproduction number, universally denoted 

as R , defines the average number of 0

secondary infections generated by an 

average infective introduced into a wholly 

susceptible population. The greater the R , 0

the more intense is the transmission and 

hence more severe is the epidemic. The 

concept of R  is the central idea in 0

mathematical epidemiology as it is vital 

for prediction or description of 

transmission dynamics of any epidemic. 

The current literature review is a 

compilation of various mathematical 

modelling studies on epidemic spread of 

air-borne and vector borne viral diseases. 

The review by Zhang et al. (2001) is 

referred to for plant viral epidemics, as it is 

not within the scope of the current review. 

Models for air-borne diseases 

1) Susceptible - Infectious - Recovered 

(SIR)

The first mathematical model used to 

describe an influenza epidemic was 

developed by Kermack and McKendrick, 

popularly known as Susceptible-

Infectious-recovered or SIR model. It 

assumes the introduction of one infected 

individual into a population where the 

members are not previously exposed to the 

pathogen and are hence all susceptible (S). 

Each infected individual (I) transmits to 

susceptible members of the population 

with a mean transmission rate β.  At the 

end of the infectious period, the individual 

recovers and is considered as Recovered 

(R) member of the population. If the mean 

recovery rate is α, then the mean 

transmission period in any individual is 

given by 1/α.  Fig. 1 describes 

schematically the SIR model of disease 

transmission. The set of differential 

equations describing the transmission as 

per the basic SIR model is given by

       � � �   (Eqn. 1.1)

Here, S(t) and I(t) denote the numbers of 

individuals in the Susceptible and 

Infectious states respectively at any time t. 

The rates of change of S(t) and I(t) with 

time are denoted by the derivatives dS(t)/dt 

and dI(t)/dt respectively. The total 
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population is considered constant and is 

given by N = S(t) + I(t) + R(t), with no one 

coming in or leaving the system.  

The number of susceptible 

individuals S(t) decreases as the number of 

incidences (i.e.,  Infectives I(t)) increase. 

The epidemic peaks then declines as more 

and more individuals recover and stop 

transmitting the disease. Considering 

everyone initially to be susceptible (i.e., at 

t=0, S(t) =N), a newly introduced infected 

individual can infect on the average βN/α 

= R individuals.  This is the basic 0

reproduction number, R . In other words, 0

R  describes the average number of 0

secondary infections generated by one 

infectious individual when introduced into 

a fully susceptible population. The 

severity of the epidemic and rates of 

increase depend on the value of the basic 

reproduction number. If R > 1, then the 0 

epidemic will continue. If R  < 1, then the 0

epidemic will die out. R can be calculated 0 

form the growth rate of the epidemic (r) 

obtained from the cumulative incidences 

data in the initial growth phase of the 

outbreak, as:

� �                (Eqn. 1.2)

The numerical solutions of the 

ordinary differential equations (Eqn1.1) 

can be obtained with suitable boundary 

conditions (appropriate for the disease) 

using computer simulations. The model 

has been used to explain the transmission 

of measles in New York, in 1962 and also 

repeated outbreaks of the disease between 

1930 and 1962 (Anderson, 1991). 

The SIR model can be extended to 

explain occurrence of repeated epidemics 

in one place due to a pathogen by 

considering the demographics i.e., 

addition and removal of individuals from a 

population through birth and death, 

respectively. Considering B to be the birth 

rate per unit time, and a mortality rate (per 

capita) μ, the Eqn1.1 can be modified as

                                             (Eqn. 1.3)

Such modification of the basic SIR model 

has been used to explain the occurrence of 

Measles (Anderson 1991). The effects of 

weather or seasonal variations in human 

behavior may affect the transmission of a 

disease. These effects can be incorporated 

by assuming a transmission rate to be a 

periodic function in time. A crude 
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Figure 1. The schematic diagram of the SIR type 

transmission model. S, I and R denote Susceptible, 

Infective and Recovered /removed categories of the 

population.
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approximation of seasonally forced 

transmission rate is

                                                   (Eqn. 1.4)

where, A is the constant defining the 

amplitude of seasonal variation (0 ≤ A ≤ 1). 

The modified SIR models have also 

been used to explain the dynamics of 

transmission of various diseases like the 

measles (Allen et al., 1990) and influenza 

(Dushoff et al., 2004; Stone, 2007).  The 

SIR model has also been suitably modified 

to represent or predict spatio-temporal 

dynamics of disease especially, Influenza 

outbreak in the erstwhile USSR 

(Rvachev,1968) and also to incorporate the 

effects of air travel on influenza pandemics 

(Baroyan et al., 1971; Coburn et al., 2009; 

Rvachev et al., 1985).

2) Susceptible - Exposed - Infectious-

Recovered (SEIR)

In case of certain infectious diseases, an 

incubation period or exposed state in an 

individual following transmission 

(receiving the causative agent) and till the 

onset of the symptoms is observed. Hence, 

the simple SIR model cannot effectively 

describe transmission of such diseases.  

Hence, mathematical model should 

account for the exposed state or the latent 

state, giving rise to development of the 

Susceptible- Exposed-Infectious-

Recovered or SEIR model. 

The SEIR model also assumes 

introduction of one infected individual 

into a population where the members are 

not previously exposed to the pathogen 

and are hence all susceptible (S). Each 

individual who received the causative 

agent (pathogen) exist in the Exposed or 

Latent state (E) during which he/she is 

incubating the virus or bacteria but the 

does not transmit the infection to anyone. 

With the onset of the symptom, the same 

individual makes a transition to the 

Infectious state and is considered as an 

infected individual (I). If к be the rate of 

transition from the Exposed state to the 

Infectious state, then duration of the mean 

exposed period or latent phase is 

1/к.Infected individual transmits 

tosusceptible members of the population 

with a mean transmission rate β. At the end 

of the infectious period, the individual 

recovers and is considered as Recovered 

(R) member of the population. If the mean 

recovery rate is α, then the mean 

transmission period in any individual is 

given by 1/α. Fig. 2 describes 

schematically the SEIR model of disease 

transmission. Considering the constant 

population size N= S + E + I + R, the set of 
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differential equations describing the 

transmission as per the basic SEIR model 

is given by

� � �                (Eqn. 2.1)

If we assume that a fraction f of the 

individuals leaving the infectious state at 

time t recover while the fraction (1-f) die 

due to disease, then the Eqns. 2.1 can be 

modified as :

� �       (Eqn. 2.2)

It should be noted that in this case the 

population is not constant but decreases as 

more members of the population succumb 

to the disease. Considering a scenario of no 

removal by death, the basic reproduction 

number can be evaluated based on the 

growth rate of the initial phase of an 

outbreak for the simple SEIR model as 

follows. 

The growth rate of the epidemic (r) can 

be calculated from the estimates of 

cumulative number of confirmed 

infections (y) and the estimated start date 

and size of the outbreak (t  and y ), 0 0

respectively, using the equation (Fraser et 

al., 2009),� �                (Eqn. 2.3) 

The basic reproduction number (R ), is 0

determined using the formula:

� �                 

       (Eqn. 2.4)

with the mean infective period 1/α and 

mean incubation period 1/к. This gives a 

more accurate estimation of the 

R compared to the SIR model, where the 0

latent phase was not considered. This is 

best explained with the help of an example. 

Gurav et al. (2010) has reported about the 

novel influenza A/H1N1 2009 (Swine flu) 

Figure 2. The schematic diagram of the SEIR type 

transmission model. S, E, I and R denote Susceptible, 

Exposed (latent), Infective and Recovered /removed 

categories of the population, respectively.

Mathematical Modeling of Viral Epidemics

Biomed Res J 2016;3(2):195–215



outbreak in a residential school in 

Panchgani, Maharashtra. Based on the 

epidemiologic data for the outbreak, Shil 

et al.(2011) derived the intrinsic 

exponential growth rate (r) to be 0.2341 

per day. Assuming the mean incubation 

period to be 1.5 days and mean infectious 

period to be 4 days, the R was estimated to 0 

be 2.61 (as per Eqn. 2.4). Similar higher 

values of R  and intense transmissions 0

were also observed in various countries for 

communities with close clustering of 

people such as village and schools 

(Guinard et al., 2009; Smith et al., 2009; 

WHO, 2009). 

 The SEIR model with suitable 

adaptations has been widely used for 

various diseases including influenza, 

chicken pox and SARS (Deguen et al., 

2000; Riley et al., 2003). Deguen et al. 

(2000) analysed the seasonal pattern of 

chicken pox epidemic in France by fitting  

SEIR model with a periodic contact rate 

function to weekly  chicken pox incidence 

data collected from 1991-1996. Both the 

models, assuming either continuous or 

piecewise constant periodic function, gave 

reasonable fit to the incidence data and 

yielded estimates of incubation and 

infectious periods consistent with the 

clinically or serologically estimated 

values. Wang et al. (2006) have adapted 

the SEIR model with a time dependant 

transmission rate (contact per infectious 

person per day) for describing the SARS 

outbreak in Beijing city. The SEIR 

solution precisely matched the 

epidemiology data. To study the 

transmission dynamics of the SARS 

outbreak in Hong Kong (2003), Small and 

colleagues (Small and Tse, 2005a; 2005b) 

adapted the SEIR concept in a 'Small 

World Model' where transmission was 

allowed within population clusters and 

between a random number of 

geographically distant clusters. 

Transmission was allowed only between 

linked nodes/ clusters. This concept could 

effectively describe the SARS outbreak of 

2003 as the computer simulations matched 

the recorded data.  

�

3) Susceptible - Exposed - Infectious -

Asymptomatic - Recovered (SEIAR)

A simple model of disease propagation 

involving asymptomatic individuals in the 

population in a scenario without any 

interventions, that is, an untreated 

Susceptible - Exposed - Infective-

Asymptomatic-Recovered model is 

explored. In the model the individuals 

were classified as: Susceptible (S) – those 

who did not have any immunity to the 

disease; Exposed (E) or latent – those 

201Shil

Biomed Res J 2016;3(2):195–215



202

exposed to the virus and incubating it prior 

to the development of symptoms; 

'Infectives' (I) – symptomatic and 

infectious; Asymptomatic (A) – those 

testing positive in serological tests/blood 

tests for the disease, but had no symptoms 

(were assumed to be partially infectious); 

and recovered population (R). A flow 

diagram for the SEIAR model is given in 

Fig. 3. Following assumptions are made 

where S, E, I, A, R, denote the numbers of 

individuals in the Susceptible, Latent (or 

exposed), Infective, Asymptomatic and 

Recovered compartments respectively, 

with the total population size at all times 

given by N = S(t) + E(t) + I(t) + A(t) + R(t), 

as: i) Total population at the initial stage 

was susceptible with no members having 

immunity through vaccination or any 

previous exposure. One infective was 

introduced. ii) There is no transmission 

from individuals at the Latent (Exposed) 

state. iii) A fraction p of the latent (E) 

individuals proceed to Infective 

(symptomatic) I compartmentat the rate k. 

The remaining fraction (1-p) goes to the 

asymptomatic compartment A at the same 

rate k. iv) The study population is 

considered constant and no consideration 

has been made for the addition or removal 

of individuals. v) Asymptomatic 

individuals have a reduced capacity to 

transmit the disease. Let 'q' be the factor 

that decides reduction in transmissibility 

of the asymptomatic individuals (0 < q < 1) 

(Poddar et al., 2010; Shil et al., 2011). vi) 

Assuming homogeneous mixing within 

the population, the average member of the 

population made contact sufficient to 

transmit infection to βN others per unit 

time, where β is the transmission rate.  vii) 

A fraction α of the infective individuals 

and a fraction η of the asymptomatic 

individuals moved to recovered class per 

unit time. viii) No restrictions on human 

behaviour (such as quarantine, wearing of 

masks) or interventions (as preventive 

medicine) are imposed. 

The transmission process is described 

by the following set of ordinary 

differential equations (ODE):

Figure 3. The schematic diagram of the SEIAR type transmission model. S, E, I, A and R denote Susceptible, Exposed 

(latent), Infective, Asymptomatic and Recovered /removed categories of the population, respectively.
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being 0.001566. The doubling time (the 

time period in which the size of the 

outbreak doubles) as calculated from t  = d

ln (2/r), where r is the exponential growth 

rate of the epidemic (Shil et al., 2011; 

Wallingaet al., 2007), was found to be 2.14 

days. The study provided estimates for 

various parameters for the outbreak such 

as the partial infectiousness and its 

duration in the asymptomatic cases. Such 

parameters were difficult to determine by 

clinical observations. The study also 

enabled qualitative assessment of the 

effect of control measures (behavioural 

interventions, etc)  in controlling the 

outbreak in a closed population. 

4) Complex SEIAR (hospitalization)

We now move on to explore how to 

incorporate the effects of interventions 

such as hospitalization into the SEIAR 

model. Chowell et al. (2006) described a 

complex SEIAR incorporating 

hospitalization of a fraction of the 

Infectives. As in the SEIAR model, the 

members of the population were classified 

into S, E, I, A, R with J(t) and D(t), in 

addition denoting the fraction hospitalized 

and dead respectively, described in Fig. 4. 

Initially the entire population is 

susceptible. It is assumed that an 

Asymptomatic individual transmits 

� � �                (Eqn. 3.1)

Here, C denotes the cumulative number of 

infectives. 

Also, all variables are positive at all 

times (0 < t < ∞) (Poddar et al., 2010; Shil 

et al., 2011).

The untreated SEIAR model with 

modifications has been adapted to explain 

the Influenza A/H3N2 outbreak in Tristan 

da Cunha 1971 (Mathews et al., 2007).  

Recently we have used this model to 

explain the transmission dynamics of the 

Swine flu outbreak at a residential school 

setting in Panchgani, Maharashtra, India 

(Shil et al., 2011). Analyses of 

epidemiological data obtained from the 

outbreak revealed that close clustering 

within population resulted in high 

transmissibility with basic reproduction 

number R = 2.61 and transmission rate (β) 0 
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disease with a reduced transmissibility. Let 

q (0 < q < 1) be the factor that decides the 

reduction in transmissibility of the 

Asymptomatics. Susceptible individuals 

contacting the virus/causative agent move 

to the latent class at a rate) 

(I(t) + J(t) + qA(t)) / N(t), 

where β is the transmission rate. 

The total population at any time t is 

given by N = S(t) + E(t) + I(t) + A(t) + J(t) + 

R(t). Assuming homogeneous mixing of 

the population and that J(t) are equally 

infectious as the I(t), the probability of a 

random contact with the Infective 

individual  is given by, 

(I(t) + J(t) + qA(t) / N(t)

A fraction ρ of the latent individuals (0 

< ρ < 1) develop symptoms and become 

Infective at the rate к and the rest (1-ρ) 

progress to become asymptomatic A(t)  

also at the same rate к. Asymtomatics 

proceed to recovered R(t) class  at the rate 

γ . The infectious individuals are 1

diagnosed and hospitalized at rate α, while 

some recover with hospitalization at rate γ2 

ordie at the rate δ. The transmission is 

described by the following set of 

differential equations:

                                             (Eqn. 4.1)

Here, μ has been considered to be the 
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Figure 4. The schematic diagram of the SEIAR type transmission model. S, E, I, A, J, R and D denote susceptible, 

exposed (latent), infective, asymptomatic, hospitalized (severe cases), recovered and dead categories of the population, 

respectively.
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rate of birth as well as the rate of natural 

death in the study population. The 

cumulative number of confirmed 

infections is given by C(t).  Epidemic data 

obtained from the Spanish flu pandemic in 

Geneva was used for fitting to this model 

and determined the parameters β, γ  ,q, α, 1

etc. 

The SEIR and SEIAR models had been 

extended by incorporating various 

parameters and accounting for public 

health interventions, behavioral changes 

or restrictions like school closure, travel 

restrictions or quarantine, etc in containing 

spread of viral diseases like influenza 

(Arino et al., 2006; Ballesteros et al., 2009; 

Baroyan  et al., 1971; Bootsma et al., 

2007;  Chauchemez, 2008;  Chowell et al., 

2006;2007; Coburn et al., 2009; 

Fergussion et al., 2006; Longini et al., 

2005; Mills et al., 2004; Sattenspeiel et al., 

2003;). The effects of vaccination in 

controlling of the influenza epidemics was 

also studied (Coburnet al., 2009; 

Galvanicet al., 2007; Vardavas et al., 

2007). The model presented by Longini et 

al. (2005) to describe the influenza 

(H2N2) pandemic of 1957-58 provided 

discrete-time simulations based on 

detailed contact structure. With the advent 

of the vaccine against novel influenza 

A/H1N1 (2009), mathematical modelling 

approach has also been used to decide the 

effective dosage (Nishiura et al., 2009).

Modelling Vector–borne diseases

In case of vector borne diseases 

transmission depends on several factors 

including the population of vectors 

(mosquitoes) and the population of human 

hosts along with the infected members 

(within each population) and the nature of  

vector-host interactions. The first 

mathematical model for vector borne 

disease was given by Ross and McDonald. 

This was improvised upon and adapted for 

various mosquito borne diseases such as 

Dengue over the ages (Esteva et al., 1999; 

Kongnuy et al., 2011). Described below is 

a simple model for transmission of 

mosquito borne disease (Kongnuy et al., 

2011).

Let us assume that the total 

populations of both humans and 

mosquitoes are constants and denoted by 

H and M, respectively. Let X(t) and Y(t) 

denote the numbers of infected humans 

and mosquitoes at any time t, respectively. 

Let α be the rate of biting on humans by a 

single mosquito (number of bites per unit 

time). Then the number of bites on humans 

per unit time per human is α /H. If b is the 

proportion of infected bites on humans that 

produce an infection, the interaction 
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between the infected mosquitoes Y(t) and 

the uninfected humans H − X(t) will 

produce new infected humans of (α /H)b[H 

− X(t)]Y(t). Let the incubation period in a 

human be of duration τ , then it is possible 1

that some individuals might recover or do 

not get the disease during this incubation 

period. Thus, of those individuals infected 

τ  unit times ago, only a proportion1

is infectious at the present time t, where r is 

the per capita rate of recovery in humans so 

that 1/r is the duration of the disease in 

humans. Therefore, the equation for the 

rate of change in the number of infected 

humans is

                                                   (Eqn. 5.1)

Let μ be the per capita rate of mortality 

in vectors then, 1/μ is the life expectancy of 

vectors. If the incubation interval of the 

pathogen in the mosquito has duration τ , 2

and c is the transmission efficiency from 

human to mosquito, then we have the 

equation for the rate of change in the 

number of infected mosquitoes as:

   (Eqn. 5.2)

If x(t) and y(t) are the proportion of 

infected humans and mosquitoes at time t, 

respectively, and m be  the number of 

mosquitoes per human host, then 

and

Then, we can define the dynamics of the 

disease by the following set of differential 

equations:

� � �                (Eqn. 5.3)

The model has been used by Ruan et al. 

(2008) for analyses of malaria and adapted 

by Massad and coworkers (Massadet al., 

2010) for description of Dengue 

transmission. Ruan et al. (2008) have 

estimated the basic reproduction number 

R  by different methods including an 0

adaptation of this model. For a vector 

borne disease, R  may be considered as the 0

number of persons who would be infected 

from a single person initially infected by a 

mosquito. According to this model the 

basic reproduction number is estimated as:

Considering a primary case with a 

recovery rate of r, the average time spend 

in an infectious state is 1/r. During this 
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time, since the incubation period in 

humans has duration τ , the average 1

number of mosquito bites received from m 

susceptible mosquitoes, each with a biting 

rate α, gives a total of 

mosquitoes infected by the primary human 

case. Each of these mosquitoes survives 

for an average time 1/μ and with another 

incubation period τ  in mosquitoes, makes 2

a total of�

infectious bites. The total number of 

secondary cases is thus estimated to be

which is (2). The parameter α appears 

twice in the expression because the 

mosquito biting rate controls transmission 

from humans to mosquitoes and also from 

mosquitoes to humans.

This model has been used for 

modelling epidemics driven by arboviral 

diseases. Massad et al. (2010) adapted the 

model with suitable modifications for 

estimating the R  from Dengue outbreaks 0

of Londrina, and Sao Paulo in Brazil. 

Based on the simulations that matched the 

recorded data, the authors concluded that it 

is possible to have a self-limiting outbreak 

if R  < 1 but the vector–human component 0

is greater than 1. Bowman et al. (2005) 

have used similar mathematical modelling 

and analysis to assess two main anti-West 

Nile Virus (WNV) preventive strategies, 

namely: mosquito reduction strategies and 

personal protection. They proposed a 

single-season ordinary differential 

equation model for the transmission 

dynamics of WNV in a 

mosquito–bird–human community, with 

birds as reservoir hosts and culicine 

mosquitoes as vectors. The public health 

implication of this is that WNV can be 

eradicated from the mosquito–bird cycle 

(and consequently from human 

population) if the adopted mosquito 

reduction strategy (or strategies) can make 

R < 1. 0  

Bisanzio et al. (2010) explained the 

transmission of vector borne diseases like 

Lyme disease and Tick borne Encephalitis 

using the 'bipartite networks model'. They 

concluded that aggregation of vectors on 

hosts have dramatic consequences on 

epidemic threshold and predicted that the 

larger networks are able to sustain the 

epidemic for longer time. 

Modelling the transmission of Ebola 

viral disease (EVD)

The latest major outbreak of Ebola in 

Guinea, Sierra Leone, and Liberia in 2014 

(Barry, 2014) has renewed interest in 
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modeling of epidemics. Rachah and Torres 

(2015) defined a simple Susceptible 

Infectious-Recovered (SIR) mathematical 

model that describe the 2014 Ebola 

outbreak in Liberia and validated the same 

with numerical simulations and available 

data provided by the World Health 

Organization. The authors developed a 

new mathematical model including 

vaccination of individuals in order to 

predict the effect of vaccination on the 

infected individuals over time.

Meltzer et al. (2014), used 

mathematical modeling to estimate and 

predict number of cases in Ebola outbreaks 

in Liberia and Sierra Leone. Future 

predictions based on present available 

outbreak data helped in estimating the 

probable scale of outbreak and enabled 

public health authorities to be prepared for 

containment and control. 

Siettos et al. (2015), developed an 

agent-based model to investigate the 

epidemic dynamics of Ebola virus disease 

(EVD) in Liberia and Sierra Leone, 2014. 

The dynamics of the agent-based 

simulator evolved on small-world 

transmission networks of sizes equal to the 

population of each country, with 

adjustable densities to account for the 

effects of public health intervention 

policies and took into account human 

behavioral responses to the evolving 

epidemic.

In a different study, Lewnard et al. 

(2014) developed a transmission model of 

Ebola virus that was fitted to reported 

EVD cases and deaths in Montserrado 

County, Liberia. They used this model to 

assess the effectiveness of expanding EVD 

treatment centres, increasing case 

ascertainment, and allocating protective 

kits for controlling the outbreak in 

Montserrado. The estimated value of basic 

reproductive number for EVD in 

Montserrado was 2.49 (95% CI 

2.38–2.60), and predictions indicated that 

existing facilities were inadequate to cope 

with future cases. Their study also 

revealed importance of protective kits in 

containing the number of cases. As a 

public health outcome, these findings 

prompted authorities to upgrade the 

facilities. 

Modelling Sexually transmitted 

diseases (STDs)

Mathematical modeling has also been 

used to describe transmission of sexually 

transmitted diseases as HIV/AIDS, 

syphilis, gonorrhoea, etc (Chin et al., 

1991; Garnett, 1999; 2002; Garnett et al., 

1997;2000; 80–84). In case of STDs 

mathematical modelling can describe the 
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positions of individuals within the network 

of sexual partnerships allowing 

identification of risks for acquiring the 

disease. Since the transmission 

mechanism for all these diseases are varied 

considering human behavior and social 

dynamics, different mathematical 

modelling was used for the different 

diseases. For same disease different 

mathematical approaches have also been 

described in studies from different 

countries (Brunham et al., 1990; Morris et 

al., 1997; Rapatski et al., 2006). A simple 

model for HIV/AIDS epidemic was 

described theoretically by Garnett et al. 

(2002), taking into account various 

parameters for modelling STDs. 

Considerable work has been carried out on 

the mathematical analyses of spread of 

HIV/AIDS (Brunham et al., 1990; Morris 

et al., 1997; Rapatski et al., 2006), reports 

on epidemics from India are rare (Rao,  

2003). Rao (2003) described different 

models to explain the transmission 

patterns of AIDS in India and highlighted 

that the variable incubation period in 

patients contribute to complexity in the 

modelling of AIDS epidemic.Varied social 

behavior and interaction patterns in human 

populations across the globe makes it 

difficult to construct generalized models 

for STDs. 

Advantages and limitations in disease 

modelling

Study on transmission dynamics of any 

disease depends on the nature of data and 

designing of a model that best describes 

the outbreak scenario. Fitting of 

epidemiological data helps in optimizing 

model parameters especially those which 

cannot be determined by experimentation. 

For example, the asymptomatic 

parameters (whether asymptomatics are 

capable of transmission, how much and for 

how long, etc) for influenza in humans 

cannot be estimated by experimentation or 

observations but can be estimated from 

modelling studies provided that total 

number of asymptomatic  individuals are 

known (by serosurvey) for a particular 

outbreak (Shil, et al. 2011). Modelling and 

simulation studies based on 

epidemiological data can also help 

estimate the effectiveness of control 

measures, and can be employed for 

evaluation of vaccine efficacy. However, 

in spite of advantages modelling of 

epidemics also has limitations. 

� Limitations in disease modelling 

results from improper recording of data 

especially if it involves contact tracing 

(methods and efficiency may vary 

country-wise), and /or assumptions for 

description of the outbreak scenario.  This 
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