
INTRODUCTION

Cytotoxic antineoplastic agents play 

integral part in the management of cancer 

patients. However, the chemotherapeutic 

agents are cytotoxic to the malignant 

cells, and also affect normal cells 

(DeVita and Chu, 2008). This results in a 

narrow therapeutic index coupled with 

severe form of toxicity impacting 

adversely on the quality of the life of the 

patients. Furthermore, the adverse effects 

result in treatment delays, sub-

therapeutic dose delivery and cessation 

of treatment, and impact the treatment 

outcome and patient survival (Braun and 

Seymour, 2011). A summary of common 

form of chemotherapy-induced toxicities 

is demonstrated in Table 1.

A better understanding of the cancer 

Key words: Chemoprotection, cytoprotective agents, chemotherapy, nutraceuticals, antioxidants, growth factors.
*Corresponding Author: Sudin Bhattacharya, Department of Cancer Chemoprevention, Chittaranjan National 
Cancer Institute, 37, S. P. Mukherjee Road, Kolkata – 700 026, West Bengal, India.
Email: sudinb19572004@yahoo.co.in

Chemoprotectants in Cancer Chemotherapy: An Update

Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, Kolkata – 700026, West Bengal, 

India

Abhishek Basu, Arin Bhattacharjee, and Sudin Bhattacharya*

Cancer chemotherapeutic agents play an integral part in the management of patients with malignancy. 

However, chemotherapy is associated with significant toxicity with an adverse impact on the health of 

the patients. As a result the therapeutic outcome is influenced due to the inability to deliver sufficient 

dose-intensive therapy leading to treatment delays or cessation. Chemoprotectants have been 

developed in order to mitigate the toxicity associated with chemotherapeutic agents by providing organ-

specific protection to normal tissues, without compromising the antitumor efficacy. The current review 

highlights chemoprotectants in the management of chemotherapeutics-associated toxicity, such as: 

amifostine, aprepitant, dexrazoxane, filgrastim, sargramostim, mesna, oprelvekin, palifermin, 

recombinant human erythropoietin etc. Additionally, the present status on the concurrent use of 

chemoprotectants in combination with chemotherapeutic agents, with focus on their safety is included. 

The advantageous role of these cytoprotective agents combined with chemotherapy remains 

controversial in clinical studies due to moderate protective efficacy for normal tissues and organs, risk of 

concomitant tumor protection and adverse reactions. Besides, the number of successful agents is rather 

small. Therefore, identification of novel approaches and chemoprotectants holds potential for better 

management of cancer with chemotherapy.
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cell biology was anticipated to identify 

specific targets for cancer therapy. 

However, a need for strategies to reduce 

or circumvent host organ toxicity is the 

need of the hour (Liu et al., 2015). The 

chemoprotective therapies have been 

developed to mitigate the healthy tissue 

toxicity and improve the therapeutic 

window of cytotoxic antineoplastic 

agents. Chemoprotection is defined as 

protection of the toxicity of a chemical 

through administration of another agent 

(Jena et al., 2010). An ideal 

chemoprotectant should be easy to 

administer, non-toxic, not alter the 

pharmacokinetics of the cytotoxic agent 
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and should not inhibit or reduce 

antitumor activity of the drug (Marx and 

Friedlander, 2010). To cite an example, 

reactive oxygen species (ROS) generated 

by anticancer drug or a free radical 

intermediate of the drug plays a critical 

role in cytotoxicity of cancer cells, then 

antioxidative chemoprotectant is not 

indicated as it will interfere with the 

antineoplastic activity. However, if 

generation of ROS is responsible only for 

the adverse effects of the anticancer drug, 

then antioxidative chemoprotectant may 

reduce the severity of the toxicity 

without interfering with the 

antineoplastic activity of the drug 

(Conklin, 2004). The first 

chemoprotectant in clinical use was 

folinic acid (calcium folinate; 

leucovorin), indicated to circumvent 

methotrexate-induced toxicity (Links and 

Lewis, 1999).

During chemotherapy, selection of 

chemotherapeutic agents, and the dose 

and duration of treatment is dependent on 

the type and stage of malignancy. 

However, consideration to selection of 

appropriate chemoprotectants is often 

neglected and is equally important (Jena 

et al., 2010). The efficacy of various 

chemoprotectants differs in terms of 

potency, pharmacokinetics, accumulation, 

distribution, and mechanism of action; 

and hence, these parameters must be 

taken into account during selection of 

chemoprotectants for clinical use. It is 

difficult and perhaps impossible to 

design a common chemoprotectant to 

circumvent the deleterious effects, 

irrespective of individual therapy (chemo 

or radiation). Thus, the complexity still 

lies in appropriate selection of 

chemoprotectants and their use in 

chemotherapy or radiotherapy without 

compromising the efficacy. In the current 

review, currently used chemoprotective 

agents, their clinical use and limitations 

have been highlighted.

®Amifostine (Ethyol )

Amifostine (WR-2721, S-2-[3-

aminopropylamino] ethylphosphoro-

thioic acid) (Fig.1) is a prodrug 

converted to the active, 

dephosphorylated, cell permeable 

metabolite WR-1065 by cell membrane-

bound alkaline phosphatase (Hoekman et 

al., 1999), initially used for capability to 

prevent damage caused by ionizing 

radiation (Kouvaris et al., 2007). It is a 

broad-spectrum cytoprotectant specific 

for host organs and tissues and 
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Figure 1: Chemical structure of some clinically used chemoprotectants.

recommended by US Food and Drug 

Administration (USFDA) for clinical use 

in patients receiving cisplatin alone 

and/or in combination with other 

chemotherapeutic drugs (Ali and Al 

Moundhri, 2006; Devine and Marignol, 

2016). The American Society of Clinical 

Oncology endorsed amifostine use in 

prevention of cisplatin-associated 

nephrotoxicity, for minimization of 

neutropenia (grade 3–4), and reduce 

acute and late xerostomia associated with 

radiotherapy in head and neck cancer 

(Nicolatou-Galitis et al., 2013). 

The metabolite of amifostine, WR-

1065 is suggested to be responsible for 

the chemoprotective efficacy of 

amifostine. Amifostine selectively 

protects normal organs and tissues due to 

the greater capillary alkaline phosphatase 

activity, high pH and superior vascularity 

of normal tissues in comparison to tumor 

tissue (van den Berg et al., 2006). Thus, 

normal calls may be able to acquire 

about 100-fold higher concentration of 

the free thiol than tumor cells (Marx and 

Friedlander, 2010). Intracellularly, WR-

1065 scavenges free radicals, protecting 

DNA and cellular membranes from 

damage (Kouvaris et al., 2007). The 

160 Chemoprotectants in Cancer Chemotherapy

Biomed Res J 2016;3(2):157–181



oxidation of WR-1065 to WR-33278 

(polyamine-like disulfide metabolite) 

results in higher amount of WR-33278 

conjugated DNA, thereby restricting 

target sites against free radical attack 

(Savoye et al., 1997). Thus WR-1065 

contributes to minimization of double-

strand breaks following chemotherapy, 

resulting in recovery of the temporary 

block of cell cycle at G  phase, thereby 2

promoting proliferation of epithelial cells 

(Rubin et al., 1996). Indirectly, 

amifostine through induction of hypoxia 

stimulates expression of proteins 

implicated in DNA repair and inhibition 

of apoptosis, such as HIF-1α and Bcl-2 

(Kouvaris et al., 2007).

Amifostine exerts protection as 

reported in several clinical trials against 

cisplatin-induced nephrotoxicity and 

cyclophosphamide-induced hemato-

toxicity (Links and Lewis, 1999). The 

recommended dose for amifostine is 
2740–910 mg/m . Amifostine is well 

tolerated with the main toxicities being 

nausea, sneezing, allergic reactions, 

metallic taste and hypotension. Transient 

hypocalcaemia has been also noted and is 

due to the deregulation of parathyroid 

hormone (Marx and Friedlander, 2010). 

Clinical trials in advanced ovarian cancer 

patients confirmed that pre-treatment 

with amifostine effectively attenuate the 

cumulative renal, hematologic and 

neurologic toxicity of the chemotherapy 

regimen constituting cisplatin and 

cyclophosphamide (Devine and 

Marignol, 2016; Kemp et al., 1996). 

Different amifostine analogues have been 

investigated preclinically to define 

toxicity. Amongst these, DRDE-07 (S-2 

(2-aminoethylamino) ethyl phenyl 

sulfide) showed most promising efficacy 

(Gautam et al., 2010). 

®Aprepitant (Emend )

Chemotherapy-induced nausea and 

vomiting (CINV) are adverse effects on 

the quality of life of patients (Ballatori 

and Roila, 2003). The incidence of CINV 

influences patient compliance with 

chemotherapeutic regimens, and 

influences the decision of patient to 

undergo chemotherapeutic treatment 

(Aapro et al., 2015). Aprepitant (Fig.1) 

has emerged as a new class of antiemetic 

for control of CINV (Grunberg et al., 

2013). Recent clinical regulations from 

the Multinational Association for 

Supportive Care in Cancer (MASCC), 

European Society of Medical Oncology 

(ESMO), American Society of Clinical 

Oncology (ASCO), and the National 

Comprehensive Cancer Network 
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(NCCN) approved aprepitant singly or in 

combination with serotonin receptor 

antagonist or corticosteroid, as the most 

effective therapeutic regimen for 

reducing both acute and delayed CINV 

associated with high emetic 

chemotherapy, or with anthracycline, 

cyclophosphamide and/or cisplatin-based 

therapeutic regimens (Aapro et al., 2015; 

Basch et al., 2011).

Aprepitant is a highly selective 

antagonist of human substance P or 

neurokinin 1 (NK1) receptors. Aprepitant 

has little or no affinity for dopamine, 

serotonin (5-HT ), and corticosteroid 3

receptors, the molecular targets of 

existing therapies for CINV and 

postoperative nausea and vomiting 

(PONV) (Hargreaves et al., 2011). 

Animal and human studies with 

aprepitant have revealed that by crossing 

the blood brain barrier it occupies brain 

NK1 receptors (Bergström et al., 2004). 

Aprepitant augments the antiemetic 

activity of dexamethasone and 5-HT  3

receptor antagonist ondansetron, and 

blocks the acute and delayed phases of 

emesis induced by cisplatin (Di Maio et 

al., 2013). The usual toxicity associated 

with aprepitant is constipation, tiredness, 

headache, loss of appetite, and hair loss. 

In some cases, incidence of pruritus and 

neutropenia are reported (Aapro et al., 

2013). 
®

Fosaprepitant (Ivemend ) (Fig.1) is a 

newly marketed intravenous prodrug 

formulation of aprepitant. USFDA and 

European Medicines Agency (EMEA) 

approved fosaprepitant for prevention of 

acute and delayed nausea and vomiting 

associated with initial and repeated 

courses of moderate to high emetogenic 

cancer chemotherapy, including high-

dose cisplatin (Langford and Chrisp, 

2010). Several other NK1 receptor 

antagonists including casopitant, 

rolapitant, and netupitant, are undergoing 

clinical studies for management of CINV 

(Aapro et al., 2015). Casopitant had 

completed numerous phase III trials, but 

was not approved by the USFDA because 

of insufficient safety data (Navari, 2013). 

Both netupitant and rolapitant were 

promising in control of CINV. Rolapitant 

is under phase III trials. Netupitant in 

combination with palonosetron showed 

efficiency in reducing CINV in phase III 

trials (Aapro et al., 2014).

®Dexrazoxane (Zinecard )

Dexrazoxane (ICRF-187), a 

bisdiozpiperazine (Fig.1), is the d-isomer 

of the racemic compound razoxane 

(ICRF-159) and a lipophilic derivative of 
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ethylenediaminetetraacetic acid (EDTA), 

a chelating agent (Hoekman et al., 1999). 

Dexrazoxane has received USFDA 

approval to minimize the incidence and 

severity of doxorubicin-associated 

cardiomayopathy in women with 

metastatic breast cancer. In UK 

Dexrazoxane is used for prevention of 

doxorubicin- or epirubicin-induced 

chronic cumulative cardiotoxicity in 

advanced/metastatic cancer patients 

following anthracycline-therapy (Jones, 

2008). 

The cardioprotective activity is due to 

the hydrolysis product ICRF-198 

(hydrolyzed by dihydropyrimidine 

aminohydrolase), which chelates the free 

and bound forms of  myocardial 

intracellular iron, subsequently 

decreasing complexation of metal ions 

with anthracycline, hence leading to a 

decline in the formation of superoxide 

anions (Jones, 2008). In addition, 

dexrazoxane also shows cytotoxic effect 

via inhibition of topoisomerase II (Zhang 

et al., 2012), and thus potentiates or 

antagonizes the cytotoxicity of 

chemotherapeutic agents in experimental 

tumor models (Hasinoff et al., 1998; 

Sehested et al., 1993). Dexrazoxane 

diminishes doxorubicin-induced 

cardiotoxicity through its capability to 

inhibit topoisomerase IIβ (Zhang et al., 

2012), and degrades topoisomerase IIβ, 

reducing doxorubicin-induced DNA 

damage (Lyu et al., 2007). 

Randomized clinical trials have 

established the chemoprotective efficacy 

of dexrazoxane against anthracycline-

induced cardiac damage (Doroshow, 

2012). Besides, dexrazoxane potentiates 

hematotoxicity caused by chemotherapy 

or radiation (Links and Lewis, 1999). 

The common adverse effects are phlebitis 

at the site of injection and myelotoxicity 

(Hoekman et al., 1999). Dexrazoxane has 

been associated with a greater risk of 

developing secondary malignancy, such 

as, acute myeloid leukemia and 

myelodysplastic syndrome in pediatric 

patients with Hodgkin's disease (Jones, 

2008). Recently, dexrazoxane was used 

as an antidote for anthracycline-induced 

extravasation injury (Doroshow, 2012). 

®Filgrastim (Neupogen ) and 
®

Sargramostim (Leukine )

The hematopoietic growth factors 

(HGFs) are a family of endogenous 

glycoproteins with a role in survival, 

proliferation, and differentiation of 

primordial hematopoietic progenitor and 

stem cells, and regulation of certain adult 

cells (Raposo et al., 2006). Twenty 
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molecules of HGF have been 

characterized, with granulocyte colony-

stimulating factor (filgrastim) and 

granulocyte-macrophage colony-

stimulating factor (sargramostim) 

indicated for reducing febrile neutropenia 

following chemotherapy and as a 

supportive therapy in bone marrow 

transplantation (Mhaskar et al., 2014). 

Filgrastim and sargramostim have been 

approved for therapy by USFDA on 1991 

(Beveridge et al., 1998).

Filgrastim is an analog of granulocyte 

colony-stimulating factor (G-CSF) 

biosynthesized in Escherichia coli by 

recombinant DNA technology (Sourgens 

and Lefrère, 2011). Filgrastim stimulates 

production of neutrophils in the bone 

marrow, induces proliferation and 

differentiation of neutrophil progenitor 

cells, enhances phagocytic ability‚ 

antibody dependent killing, priming of 

the cellular metabolism associated with 

respiratory burst‚ and enhances 

expression of certain cell surface 

antigens (Haas and Murea, 1995). On the 

other hand, sargramostim is a yeast-

derived recombinant granulocyte 

macrophage colony-stimulating factor 

(GM-CSF) (Waller, 2007). During 

hematopoiesis, sargramostim induces 

growth of macrophage, granulocyte, 

lymphocytes and eosinophil colonies 

(Raposo et al., 2006). It generates 

myeloid dendritic cells and monocytes, 

leading to greater immunogenic 

responses, against tumor specific 

antigens (Waller, 2007). Sargramostim 

acts on tumor cells by cytokine priming 

(Boyer et al., 2000). In acute 

myelogenous leukemia (AML), 

Sargramostim enhances the susceptibility 

of leukemic blast cells to antitumor 

activity of chemotherapy. It causes 

terminal differentiation of cancer stem 

cells to myeloid cells, thus reducing the 

number of self-renewing cells (Arellano 

et al., 2007), differentiates the blasts to 

antigen-presenting cells that activate 

immune responses and targets the cells 

for immunotherapy (Boyer et al., 2000).

Filgrastim and sargramostim are 

administered as a prophylactic or 

curative therapy in patients on 

myeloablative chemotherapy resulting in 

prolonged neutropenia. Patients with 

AML, Hodgkin's lymphoma, non-

Hodgkin's lymphoma, sarcomas, 

seminomas and small cell carcinomas of 

the lungs are treated with these agents 

(Raposo et al., 2006). Before collection 

by leukapheresis for hematopoietic stem 

cell transplantation, Filgrastim is used to 

augment hematopoietic stem cells in 
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blood (Kelsey et al., 2016). 

Sargramostim is also indicated in 

neutropenic patients with 

myelodysplastic syndrome (MDS) and/or 

aplastic anemia (Mehta et al., 2015). 

Therapy is usually begun 24–72 hours 

after cessation of chemotherapy and is 

often continued until the absolute 

neutrophil count reaches a normal count 

of 10,000 cells/μl (Mehta et al., 2015). 

The major associated toxicity includes 

flu-like symptoms of flushing, rash, 

fever, malaise, arthralgia, myalgia, 

headache, anorexia and elevations of 

serum aminotransferases (Henk et al., 

2015). 

®Mesna (Mesnex )

Mesna (sodium-2-mercapto-ethane 

sulfonate) (Fig.1) is a specific 

chemoprotectant against hemorrhagic 

cystitis induced by cyclophosphamide 

and ifosfamide (Altayli et al., 2012). 

Cyclophosphamide and ifosfamide 

undergo biotransformation by hepatic 

microsomal enzymes to form acrolein 

and phosphoramide mustard. Acrolein 

and related urotoxic metabolites, 

especially 4-hydroxy metabolites (4-

hydroxy-ifosfamide and 4-hydroxy-

cyclophosphamide) are consequently 

excreted into the urinary bladder to 

induce hemorrhagic cystitis (Zhang et 

al., 2006). The incidence of hemorrhagic 

cystitis following high-dose 

cyclophosphamide ranges from 0.5-40% 

in patients (Marx and Friedlander, 2010). 

Being a thiol compound mesna 

inactivates alkylating metabolites 

forming an inert form of thioether. In the 

bloodstream, mesna is converted to an 

inactive disulfide form, 

dithiodiethanesulfate or dimesna. 

Dimesna is subsequently secreted and 

filtered in the kidneys, where the 

enzymes glutathione reductase and thiol 

transferase reducing dimesna to mesna. 

Mesna then enters in the bladder, where 

the free sulfhydryl groups forms a 

conjugate with acrolein (Links and 

Lewis, 1999). Mesna also binds to 4-

hydroxy-ifosfamide or 4-hydroxy-

cyclophosphamide to form a non-

urotoxic 4-sulfoethylthio-ifosfamide or 

4-sulfoethylthio-cyclophosphamide 

(Salman et al., 2016). As the efficacy of 

mesna is limited to urinary tract, the non-

urological toxicity and the systemic 

activity of the oxazaphosphorines are not 

affected. Hence combinatorial treatment 

with mesna and cyclophosphamide or 

ifosfamide is effective (Links and Lewis, 

1999).

Several clinical studies have 
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confirmed efficacy of mesna against 

cyclophosphamide- and ifosfamide-

induced bladder toxicity (Salman et al., 

2016). However, 5% of patients on 

mesna and cyclophosphamide or 

ifosfamide therapy suffer from 

hemorrhagic cystitis during or on 

completion of the treatment. This may be 

due to additional metabolites such as 

chloroethylaziridine and phosphoramide 

mustard including hemorrhagic cystitis 

and mesna does not inactivate the agents 

that cause symptoms of hemorrhagic 

cystitis (Altayli et al., 2012). Mesna 

minimizes hematuria and hemorrhagic 

cystitis in patients receiving 

cyclophosphamide or ifosfamide during 

chemotherapy (Payne et al., 2013). 

Mesna is also indicated as a mucolytic 

agent (Sathe et al., 2015). 

Mesna is generally administered 

intravenously or orally, with 2 litre of 

intravenous or oral fluid daily for 

ensuring hydration. Therapeutic cycles 

are generally repeated every 3-4 weeks 

(Links and Lewis, 1999).  Mesna is 

usually associated with minimal toxicity. 

The most frequently reported adverse 

effects were headache, dizziness, nausea, 

vomiting, diarrheal, anorexia, back pain, 

arthralgia, hyperaesthesia, influenza-like 

symptoms and coughing (Khaw et al., 

2007). 

®Oprelvekin (Neumega )

Interleukin eleven (IL-11) is a 

thrombopoietic growth factor that 

activates proliferation and differentiation 

of hematopoietic stem cells and 

megakaryocyte progenitor cells, and 

induces maturation of megakaryocyte 

leading to enhanced production of 

platelet (Cantor et al., 2003). Interleukin-

11 mRNA extracted from MRC5 human 

fetal lung fibroblast cell line was used to 

generate a 178 amino acid encoding 

cDNA, and biosynthesized in 

Escherichia coli. Oprelvekin is 

nonglycosylated with a molecular mass 

of 19kD (Wilde and Faulds, 1998).

Oprelvekin was approved by USFDA 

for prevention of severe form of 

thrombocytopenia and in patients with 

non-myeloid malignancies needing 

platelet transfusions following 

myeloablative chemotherapy in patients 

(Sitaraman and Gewirtz, 2001). Thus it 

was a pharmacological alternative to 

platelet transfusions, inducing 

megakaryocytopoiesis and 

thrombopoiesis (Adams and Brenner, 

1999). The induced platelets are 
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morphologically and functionally normal 

with normal life span (Berl and 

Schwertschlag, 2000). The drug is under 

investigation for management of 

inflammatory disorders including 

rheumatoid arthritis, inflammatory bowel 

disease, and chemotherapy-associated 

mucositis (Dorner et al., 1997). The non-

hematopoietic activity of oprelvekin 

includes inhibition of adipogenesis, 

regulation of intestinal epithelium 

growth, stimulation of osteoclastogenesis 

and neurogenesis, and inhibition of 

proinflammatory cytokine production by 

macrophages (Du and Williams, 1997). 

However, non-hemopoietic pathological 

alterations observed in animals include 

periosteal thickening, fibrosis of tendons 

and joint capsules, papilledema and 

embryotoxicity (Smith JW, 2001).

The drug is given subcutaneously, 

injected in the abdomen, hip or thigh post 

completion of chemotherapy. 

Administration must be continued until 

the platelet count is ≥ 50,000 cells/μl; 

although administration for more than 21 

days is not recommended. Oprelvekin 

must be discontinued at least 2 days 

before the subsequent cycle of 

chemotherapy (Kaye, 1998; Wilde and 

Faulds, 1998). The drug is not indicated 

in myelotoxic chemotherapy in pediatric 

patients as the safety and efficacy have 

not been established (Cantor et al., 

2003). The most commonly occurring 

adverse events are dyspnea, edema, 

palpitations, tachycardia, pleural 

effusions, atrial fibrillation/flutter, 

conjunctivitis and oral moniliasis. 

Adverse effects include an increase in 

plasma volume and fluid retention, 

indicating that oprelvekin should be 

prescribed with caution in patients with 

congestive heart failure (Baldo et al., 

2014).

®Palifermin (Kepivance )

Palifermin is a curtailed derivative of 

keratinocyte growth factor (KGF or 

FGF7) produced in Escherichia coli 

using recombinant DNA technology 

(Finch et al., 2013). Palifermin is an 

aqueous-soluble, 140 amino acid, 16.3 

kD protein. The first 23 N-terminal 

amino acids have been deleted to 

improve protein stability and thus differ 

from endogenous human KGF (Baldo et 

al., 2014). Palifermin induces cellular 

growth responses via FGFR2b receptor, 

is expressed in oesophagus, buccal 

mucosa, stomach, salivary gland, 

intestine, liver, lung, kidney, pancreas, 

bladder, mammary glands, prostate, lens 

of the eye, skin and thymus (Vadhan-Raj 
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et al., 2013). Palifermin shows multiple 

pharmacological activities such as 

protection and regeneration of the 

mucosal epithelium following radiation- 

and chemotherapy- induced damage. 

Palifermin causes inhibition of DNA 

damage and apoptosis of epithelial cells, 

elevation of detoxifying enzymes and 

attenuation of pro-inflammatory 

mediators, along with enhanced 

proliferation, differentiation and 

migration of epithelial cells (Blijlevens 

and Sonis, 2007). Palifermin regulates 

helper Tcell type1 proinflammatory 

cytokines and increases helper Tcell 

type2 antiinflammatory cytokines such as 

IL4 and IL-13 (Panjwani, 2013).

Clinical use of palifermin to 

minimize the incidence and duration of 

severe oral mucositis in patients with 

hematological malignancies undergoing 

myeloablative therapy has been 

recommended by USFDA (Chaveli-

López and Bagán-Sebastián, 2016). 

Palifermin mitigates oral mucositis in 

patients receiving synchronous 

chemotherapy/radiotherapy or multi-

cycle chemotherapy to treat solid tumors. 

Efficacy in immune reconstitution after 

hematopoietic stem cell transplantation 

and decreasing graft-versus-host disease 

(GVHD) following allogeneic 

transplantation is under investigation 

(Vadhan-Raj et al., 2013). Intravenous 

bolus injection is the recommended route 

of delivery after myelotoxic 

chemotherapy (Finch et al., 2013).

Palifermin is well tolerated, although 

side effects such as temporary changes in 

taste, thickening of buccal mucosa and 

tongue, white coating of tongue, burning 

sensation and erythema in skin, pruritus, 

rash and transient elevation in amylase 

and lipase have been reported (Vadhan-

Raj et al., 2013). As palifermin acts as a 

growth factor for epithelial cells and 

several carcinomas express FGFR2b, it 

may potentiate tumor growth, block 

apoptosis and protect tumor cells from 

chemotherapy (Baldo et al., 2014).

Other Chemoprotective Agents

Besides the chemoprotectants mentioned 

above, potential clinically relevant 

chemoprotective agents have been 

indicated in Table 2. These agents act by 

interfering with the metabolic and 

cellular regulatory pathways of 

chemotherapeutics agents, modifications 

of inflammatory pathways, and 

antioxidative mechanisms. Herein, the 

therapeutic indications, mechanism of 

action and adverse reactions are tabled 

(Table 2). Apart from the clinically used 
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compounds with enhanced specificity to 

normal cells, with delivery of the drugs 

not affecting the antitumor efficacy of 

cytotoxic agents. Development of such 

selective chemoprotective agents that 

lessen the burden of treatment and are 

cost effective is the need of today.
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chemoprotectants there are also some 

compounds which show promising 

chemoprotective efficacy in preclinical 

stages (Table 3).

Conclusion

Evidences in literature validate the 

potential role of chemoprotectants in the 

management of toxicities encountered by 

patients receiving cytotoxic 

chemotherapeutic drugs. Several of the 

compounds provide protection without 

interference with the antitumor activity 

of the administered antineoplastic agents, 

and may enable delivery of higher doses 

of chemotherapeutics. The 

chemoprotectants in combination with 

chemotherapeutics is partially effective 

due to moderate protective efficacy 

towards normal tissues, potential risk of 

tumor growth and adverse reactions. The 

therapy in cancer may have to be directed 

to develop novel chemoprotective 
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