
INTRODUCTION 

Selenium, an element discovered in 1817 

by John Berzelius, belonging to the 

group of chalcogens, was initially 

considered to be a highly toxic element 

for humans and animals. In the early 

nineteenth century, selenium was 

identified as the cause of livestock death 

in some parts of US due to its high levels 

in cereal grains. However, subsequent 

research in early nineteenth century 

indicated that at small doses selenium 

may be useful. Finally, Schwarz and 

Foltz (Schwarz and Foltz, 1957), 

identified selenium as an essential 

micronutrient for humans (Fairweather-

Tait et al., 2011; Lee and Jeong 2012; 

Weekley and Harris, 2013). Several 

reports confirmed that selenium 

deficiency is linked to increased 

infection risks and is responsible for 

diseases like Keshan disease – an 

endemic cardio-myopathy, and Kashin-

Beck disease – an endemic osteopathy, 

primarily observed in China (Chen et al., 

1980; Yao et al., 2011). Consequently, 

the deficiency has also been correlated 

with the onset of many other disorders 

such as neurodegeneration, adverse 

mood states, altered immune response, 

cardiovascular diseases and cancer 
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Selenium, a micronutrient and an active constituent of important redox enzymes like glutathione 

peroxidase (GPx) and thioredoxin reductase (TrxR), has been investigated extensively by researchers 

all over the world for the last four to five decades. Both inorganic and organic selenium compounds are 

being evaluated as probable drugs or adjuvants for many viral infections and chronic diseases like 

cancer. Several clinical trials in cancer patients have confirmed that selenium supplementation helps in 

recovering from cancer therapy associated side effects and selenium itself does not interfere in cancer 

therapy. Efforts are on to develop new selenium compounds with anti-cancer properties. These aspects 

will be discussed in this article. 
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(Fairweather-Tait et al., 2011; Weekley 

and Harris, 2013). Selenium, is now 

recognised as an important micronutrient, 

and is an active centre of important 

selenoproteins like glutathione peroxidise 

(GPx) and thioredoxin reductase (TrxR) 

which play a crucial role in maintaining 

cellular redox homeostasis (Guo et al., 

2007; Trachootam et al., 2008). Selenium 

compounds are being explored as 

medicinal for treatment of cancer and 

other diseases, and also for minimising 

the side effects of cancer treatment. The 

current article provides a brief outline of 

important aspects on chemical-biology, 

toxicology and radio protective nature of 

selenium. 

Physico-chemical Properties of 

Selenium in Comparison with Sulphur 

and Tellurium

Selenium is a member of chalcogens and 

is present in Group 16 of the periodic 

table, between sulphur and tellurium, 

with outer electronic configuration of 
10 2 4[Ar] 3d 4s 4p . The atomic number is 34 

and atomic weight is 78.96. As a 

chalcogen, it shares many physical and 

chemical properties with sulphur, 

however being heavier than sulphur, 

selenium shows distinct differences. The 

relative abundance of selenium in earth 

crust is one-fourth of sulphur, while in 
5humans it is ~10  times lesser. Selenium 

has lower electro-negativity and 

ionisation energy and larger atomic 

radius than sulphur. The bond 

dissociation energies of C-Se, Se-H and 

Se-Se are less than that of C-S, S-H and 

S-S bonds respectively. The selenol 

(RSeH) is more acidic than thiol (RSH). 

For example in selenocysteine, pKa of 

Se-H is 5.43, while that of S-H in cystine 

is 8.22. Thus at neutral pH, significant 

difference in the redox behaviour and 

chemical reactivity of selenium is 

observed compared to sulfur (Jamier et 

al., 2010; Wessjohann et al., 2007). 

Tellurium, a heavier member of the same 

group is a rare element on earth with 
10 2

electronic configuration of [Kr] 4d  5s  
4

5p , atomic number is 52 and atomic 

weight is 127.60. Like selenium, 

tellurium can form analogous 

organotellurium compounds. However 

due to its larger atomic size, the Te-C 

bond is weaker than Se-C bond and 

therefor no n tellurium containing amino 

acids is found in nature (Cunha et al., 

2009). 

The redox behaviour of selenium 

depends on molecular form and 
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localization with the neighboring groups 

(Mugesh et al., 2001; Mukherjee, 2010). 

In living beings selenium is present 

mainly in the form of selenocysteine and 

selenomethionine (Whanger, 2002). 

Selenocysteine, considered as the 21st 

aminoacid, is more reactive than cystine 

and is incorporated in proteins by the 

specific UGA codons (Arnér, 2010; 

Behne and Kyriakopoulos, 2001; 

Rahmanto and Davies, 2012). Selenium 

has variable oxidation states between +6 

and –2. In selenocysteine the element is 

fully reduced with oxidation state of –2, 

while that in diselenide selenocysteine 

the oxidation state is assigned to –1.  

Selenium participates in electron transfer 

reactions in a similar way as sulfur, 

however due to higher electropositivity 

selenium can be easily oxidized as 

compared to analogous sulfur compound 

(Iwaoka and Arai, 2013; Jacob et al., 

2003). In organoselenium compounds 

selenium can interact with the suitable 

electron donor/acceptor, which results in 

non-bonding interaction between 

selenium atom and heteroatoms like 

nitrogen and oxygen (Bhabhak and 

Mugesh, 2010). Such non-bonding 

interactions in low molecular weight 

organoselenium compounds like ebselen 

modulates the GPx like antioxidant 

activity and toxicity (Mugesh et al., 

2001). Similarly, selenomethionine is a 

better antioxidant than methionine, 

because of stabilization of intermediates 

during oxidation through hemi-bonding 

interactions between selenium centered 

radical and nitrogen atom (Priyadarsini et 

al., 2013).

Assimilation, Deficiency and Toxicity 

of Selenium 

The entry point of selenium in animals is 

via plants, which absorbs the element in 

its inorganic form (sodium selenite and 

selenate) from the soil. In plants, 

selenium gets converted to organic forms 

such as methylated low molecular weight 

selenium compounds and the amino 

acids such as selenomethionine, 

selenocysteine, methylselenocysteine and 

γ-glutamyl-Se-methylcysteine (Whanger, 

2002). Animals including humans obtain 

selenium primarily in the form of 

selenomethionine by consuming plant 

products. This selenomethionine acts as a 

precursor for the synthesis of 

selenocysteine (Battin and Brumaghim, 

2009; Behne and Kyriakopoulos, 2001). 

Both selenomethionine and seleno-

cysteine are analogs of naturally 
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occurring amino acids, methionine and 

cysteine respectively. The foods rich in 

selenium are garlic, cabbage, Brazil nuts, 

broccoli, etc. Selenite and 

selenomthionine are added to nutritional 

supplements to increase selenium levels 

in the body (Fairweather-Tait et al., 2011; 

Whanger, 2002). Normal serum selenium 

level differs with age and ranges from 

70–187 μg/dL. FDA has ranked selenium 
thas 30  mandatory unit for infant 

nutrition. Recommended dietary 

allowance for selenium is 55 μg per day 

for all healthy adults of both sexes. In 

domestic farm animals of both sexes, the 

nutritional functionality of selenium 

ranges from 40–4000 μg/kg (Dhillon and 

Dhillon, 1997; Spallholz, 2001). In 

humans, up to 150 μg per day of 

selenium is added to overcome selenium 

deficiency. As per US National Research 

Council, it is safe to consume 50 to 200 

μg per day, although the upper limit is 

considered to be more conservative. 

Individual dietary selenium intakes 

across the world vary significantly. The 

highest levels of intake have been 

reported in seleniferous regions of China 

and Venezuela. Additionally, in special 

conditions like treatment of viral infected 

individuals, selenium as high as 2000 μg 

per day, is recommended (Hou et al., 

1993; Fairweather-Tait et al., 2011). 

Investi-gations in China indicated that 

750 μg per day is safe and did not 

produce toxicity (Fairweather-Tait et al., 

2011). 

Selenium prevents production of 

reactive oxygen species (ROS) and also 

scavenges some of these, thereby 

decreasing the risk of diseases associated 

with oxidative stress (Papp et al., 2007; 

Priyadarsini et al., 2013). Selenium is 

necessary for optimal immune response 

(Zwolak and Zaporowska, 2011). 

Selenium deficient individuals show 

decreased IgM and IgG titres. Selenium 

plays an important role in affecting 

prostacyclin and thromboxane ratio. 

Selenium supplementation is considered 

as a therapeutic remedy to decrease 

blood clotting. 

Higher selenium also leads to severe 

toxicity, and self-supplementation with 

frequent and higher selenium may retain 

large quantities of selenium in the body 

and therefore all necessary precautions 

must be undertaken while supplementing 

with selenium. Increased body selenium 

leads to selenosis, a condition of acute 

selenium poisoning in humans, 

characterized by loss of hair, nails and 
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swelling at the fingertips. Although 

Nelson et al. (1943) classified selenium 

as a carcinogen, there is no evidence that 

selenium is carcinogen in humans. Since 

then a large number of reports on in vivo 

toxicology of selenium compounds has 

been reported (Fairweather-Tait et al., 

2011; Nogueira and Rocha, 2011). 

However, all the studies emphasized that 

selenium becomes toxic only if its intake 

crosses the supplementation limit (> 200 

μg/day). The toxicity of selenium 

compounds not only depends on the 

quantity of element consumed, but also 

on its chemical form (Fairweather-Tait et 

al., 2011; Nagy et al., 2015; Painter 

1941; Spallholz, 1994). Most of the 

current knowledge on selenium toxicity 

has been established by studying the 

effects of supplementation with inorganic 

selenite at supra nutritional doses in 

animal models. The molecular 

mechanism underlying selenium toxicity 

is not completely understood. In a few 

reports, the toxicology of inorganic 

selenium has been related to the 

oxidation of thiols of biological 

importance, producing superoxide and 

hydrogen peroxide (Fairweather-Tait et 

al., 2011; Kitahara et al., 1993; Nogueira 

et al., 2004; Wrobel et al., 2016). 

Organoselenium compounds in general 

are less toxic compared to inorganic 

selenium compounds because of the 

oxidation state and its slow metabolism. 

However, organoselenium compounds 

undergoing reductive metabolism 

induces oxidative stress in cells through 

consuming glutathione (GSH). Further, 

the metabolic intermediates of organo-

selenium compounds depending on the 

chemical reactivities can oxidize the 

vicinal thiol/sulfahydril groups of 

proteins involved in signal transduction 

pathways leading to inactivation and 

subsequent toxicities (McKenzie et al., 

2002; Nogueira and Rocha, 2011). The 

classical example of involvement of such 

mechanisms in organoselenium induced 

toxicity has been documented in case of 

diphenydiselenide. In this study, the 

subcutaneous administration of 

diphenydiselenide (250 µmol/kg body 

weight) induced anemia through 

oxidizing the enzyme delta-

aminolevulinic acid dehydratase (δ-

ALA-D) involved in hemoglobin 

metabolism (Jacques-Silva et al., 2001). 

Apart from the above mechanisms, 

compounds like seleno-methionine 

exhibit toxicity due to non-specific 

incorporation in proteins leading to loss 
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of protein functions. Further, acute 

selenium poisoning leads to cardio-

circulatory failure and pulmonary edema 

(Fairweather-Tait et al., 2011). High 

selenium levels increase the risk of type 

2 diabetes and amyotrophic lateral 

sclerosis (Brozmanová et al., 2010; 

Fairweather-Tait et al., 2011)

Selenium Metabolism 

Both inorganic and organic selenium 

compounds are metabolised to hydrogen 

selenide (H Se). Inorganic selenite is 2

reduced to selenide through activation of 

TrxR and thioredoxin. Alternately 
–2selenite (SeO ) reacts with GSH to form 3

selenodiglutathione, which is a 

substrate/intermediate for reduction of 

selenoglutathione by glutathione 

reductase to selenol that reacts with GSH 

to yield H Se (Fairweather-Tait et al., 2

2011; Weekley and Harris, 2013). 

Selenomethionine is incorporated in 

proteins in place of methionine non-

specifically. Alternately, seleno-

methionine and other organoselenium 

compounds are converted to seleno-

cysteine via the intermediacy of seleno-

cystathionine. Selenocysteine b-lyase 

releases H Se from selenocysteine. Some 2

compounds are converted to H Se 2

through methylselenol (CH SeH). H Se is 3 2

incorporated in to selenoprotein P in the 

liver, which is a source of all 

selenoprotein synthesis. H Se is excreted 2

in the urine in the form selenosugars. 

Some times H Se may be converted to 2

CH SeH and (CH ) Se through methyl 3 3 2

transfarases and (CH ) Se is excreted in 3 2

the breath. Selenium metabolites and 

compounds have been shown to be 

effective in the detoxification of heavy 

metals such as Cd, Hg, Pb, As (Tapiero et 

al., 2003). One of the mechanisms 

suggests formation of biologically 

inactive selenides which accumulate as 
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granules in some organs (García-

Sevillano et al., 2015; Dauplais et al., 

2013). Chemical structures of important 

selenium compounds are given in Fig. 1.

Selenoproteins 

The groups of proteins that contain 

selenium as an integral part of the 

polypeptide chain are defined as 

selenoproteins and these proteins are 

responsible for most of the physiological 

functions mediated by selenium such as 

role in cellular antioxidative protection, 

redox regulation, male fertility, thyroid 

function and immune function. Seleno-

proteins are present in all lineages of life 

(i.e., bacteria, archaea and eukarya) 

(Arner, 2010; Weekley and Harris, 2013; 

Papp et al., 2007). In prokaryotes, 

formate dehydrogenase, hydrogenases 

and glycine reductase are important 

selenoproteins in which selenocysteine is 

present as the selenium moiety. In 

eukaryotes at least 25 selenoproteins 

have been identified, and important 

antioxidant selenoproteins, GPx, TrxR 

and Selenoprotein P (SelP) are discussed 

in the following sections. 

Gpx 

The most important and well-studied 

selenoprotein in eukaryotes is GPx. It is 

an antioxidant enzyme that detoxifies 

peroxides and protects against oxidative 

stress, and was essential for life in a 

knockout mouse model. GPx protects 

biomembranes and other cellular 

components from oxidative damage by 

catalyzing reduction of a variety of 

hydroperoxides, using glutathione (GSH) 

as the reducing substrate. Four distinct 

isoforms of GPx have been reported to 

be expressed in mammals, the classical 

cytosolic GPx (cGPx), phospholipid 

hydroperoxide GPx (PHGPx), plasma 

GPx (pGPx) and gastrointestinal GPx 

(GI-GPx) (Brigelius-Flohé and Maiorino, 

2013). cGPx catalyses reduction of 

hydrogen peroxide and a limited number 

of organic hydroperoxides such as 

cumene hydroperoxide and tert-butyl 

hydro-peroxide. The PHGPx is active on 

all phospholipid hydroperoxides, fatty 

acid hydroperoxides, cumene hydro-

peroxide, tert-butyl hydroperoxide, 

cholesterol hydroperoxides and hydrogen 

peroxide (Ursini et al., 1985). Although 

pGPx and GI-GPx reduce hydrogen 

peroxide and organic hydroperoxides, 

these are less active than the cGPx. The 

four GPx isoforms require selenium in 

form of selenocysteine in the active sites 

of GPx enzyme and are directly involved 

in catalytic reactions. 
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TRxR 

Human TRxR is an important 

selenoprotein, known for its role in DNA 

synthesis and protecting cells from 

oxidative stress (Arner, 2010). It is the 

only enzyme that catalyses the reduction 

of oxidized thioredoxin (TRx) using 

NADPH as a source of reducing 

equivalents. Trx is a ubiquitously present 

redox-active peptide, whose major 

function is to supply reducing 

equivalents to enzymes such as 

ribonucleotide reductase involved in 

nucleotide synthesis (Nordberg and 

Arner, 2001). During the process, TRx is 

oxidized and therefore needs to be 

reduced by TRxR. In addition to TRx, 

several other endogenous compounds 

such as lipoic acid, lipid hydroperoxides, 

cytotoxic peptide NK-lysin, vitamin K, 

dehydroascorbic acid, ascorbyl free 

radical and tumour-suppressor protein 

p53 have been reported as the substrate 

for TRxR. In mammals, two isoforms of 

TRxR namely TRxR1 and TRxR2 have 

been reported. The TRxR1 is localized in 

the cytoplasm, whereas TRxR2 is 

localized in the mitochondria. Both 

TRxR1 and TRxR2 possess 

selenocysteine at the C-terminal end, 

which is required for the catalytic 

activities. The knockout mice model of 

TRxR1 and TRxR2 suggest that deletion 

of these enzymes cannot be compensated 

by any other selenoproteins (Horstkotte 

et al., 2011; Jakupoglu et al., 2005).

SelP 

SelP is a plasma protein, which contains 

ten selenocysteine residues per 

polypeptide chain (Burk and Hill, 2005) 

accounting more than 50% of the 

selenium content present in mammalian 

plasma. The physiological roles of SelP 

is not completely understood, however 

its function as an extracellular 

antioxidant seems most probable. The 

protective role of SelP in human plasma 

against the peroxynitrite and its 

phospholipid hydroperoxide reducing 

activity are well documented in literature 

(Rock and Moss, 2010). Some studies 

suggest a probable role of SelP in 

intracellular transport and storage of 

selenium (Renko et al., 2008). Although, 

SelP has been shown to be expressed in 

various tissues, the plasma level of SelP 

is mainly contributed by liver (Renko et 

al., 2008).

Apart from selenoproteins some low-

molecular weight selenium compounds, 

such as methylselenic acid, methyl-

selenol, methylselenocysteine, and 

selenomethionine synthesized in the 
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body as byproduct of selenium 

metabolism also contribute to 

physiological functions through the 

antioxidant mechanisms (Fairweather-

Tait et al., 2011)..

Selenium and Viral Diseases 

Selenium deficiency has been linked with 

the progression of several viral diseases 

like Human immunodeficiency virus 

(HIV) and Coxsackie virus (Fairweather-

Tait et al., 2011; Rayman, 2012). Recent 

outbreak of Ebola virus in West Africa 

has also been linked with selenium 

deficiency (Abd-ElMoemen et al., 2015). 

Epidemio-logical studies linked the 

outbreak of life threatening viral diseases 

like AIDS and hemorrhagic fever caused 

by HIV and Ebola viruses with selenium 

deficiency. However the idea that 

retroviruses may incorporate selenium of 

the host cells into viral proteins or “viral 

selenoprotein theory” has emerged in the 

last decade. Till date there is no absolute 

direct proof that a virus can make a 

selenoprotein. However, computational 

analysis have not only confirmed 

presence of several of UGA codons along 

with the selenocysteine insertion 

sequence in the genome of HIV and 

Ebola virus, but also established 

similarity of some of viral proteins with 

mammalian GPx (Ramanathan and 

Taylor, 1997; Taylor et al., 1997). The 

high versus low selenium content within 

cells acts as a signal for HIV viruses to 

differentiate between a healthy and a 

dying cell (Taylor et al., 1997). During 

selenium deficiency, the ROS generation 

within the host cells is increased leading 

to oxidative stress, signaling HIV viruses 

to replicate and leave the dying cell to 

infect another healthy cell (Taylor et al., 

1997; 2016). The supplementation of 

selenium in AIDS patients induces 

expression of host as well as viral 

selenoprotein. These seleno-proteins 

protect the host cells from oxidative 

stress leading to inhibition of viral 

replication and spread of infection 

(Taylor et al., 1997; 2016). Since the 

viral replication is inhibited, the chance 

of viral genome to undergo mutation and 

to acquire characteristics of drug 

resistance is also reduced. In contrast to 

HIV, Ebola viruses have been postulated 

to contain genes with several 

selenocysteine insertion sites 

(Ramanathan and Taylor, 1997; Taylor et 

al., 2016). Therefore, the growth of 

Ebola virus in the host cells is expected 

to compete with the host for 
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incorporation of selenium in 

selenoprotein. This may cause a 

condition called “induced selenium 

deficiency” in the host cell and can 

contribute to the blood clotting 

characteristics of hemorrhagic fever. The 

above assumption is justified considering 

that the biochemical basis for an anti-

clotting effect of selenium is well 

established. Clinical data supporting the 

use of selenium for treatment of Ebola-

like hemorrhagic fever, demonstrated the 

remarkable results. In the study, 

administration of a very high oral dose of 

2 mg selenium per day as sodium 

selenite, for 9 days reduced the death rate 

from 100% (untreated) to 37% (treated) 

in very severe cases, and from 22% to 

zero in the less severe cases (Hou et al., 

1993).

Ebselen, an Important Synthetic 

Selenium Antioxidant 

Ebselen, 2-phenyl-1,2-benzisoselenazol-

3(2H)-one (PZ 51, DR3305), is an 

organoselenium compound (Fig. 1), 

extensively studied and considered as a 

standard synthetic selenium antioxidant 

(Azad and Tomar, 2014; Muller et al., 

1984). It exhibits promising GPx like 

activity by scavenging hydrogen 

peroxide and hydroperoxides and also 

reacts with peroxynitrite. It inhibits 

enzymes such as lipoxygenases, NO 

synthases, NADPH oxidase, protein 
+ +kinase C and H /K -ATPase. Ebselen 

exhibits anti-inflammatory and anti-

oxidant properties and protects against 

oxidative challenge, which has been 

demonstrated in a variety of in vivo 

models (Schewe, 1995). It is a modest 

immunostimulant and induces several 

interleukins including IL-1, IL-6, IL-10 

and IL-18. Ebselen is less toxic than 

many other compounds, as metabolism 

produces compounds in which selenium 

is retained within the ring structure. 

Ebselen demonstrates blood-brain 

permeability and rapid absorption 

following oral administration (Singh et 

al., 2013). A variety of studies 

demonstrated that ebselen attenuates 

neuronal cell death induced by 

ischemia/reperfusion. It has been shown 

to be a safer alternative for lithium, for 

treatment of bipolar disorder. It shows 

antidiabetic properties and prevents 

associated heart complications in diabetic 

rats (Saad et al., 2006).

Experimental studies in rats and dogs 

revealed that ebselen inhibits both 

vasospasm and tissue damage in stroke 
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models, which correlates with the 

inhibitory effects on oxidative processes. 

Results from randomised, placebo 

controlled, double blind clinical studies 

on the neurological consequences of 

acute ischaemic stroke patients treated 

with ebselen showed encouraging results. 

Safety and tolerability were good and no 

adverse effects were observed. High 

concentrations of ebselen caused cellular 

toxicity (Singh et al., 2013).

Selenium in Radiotherapy 

Radiotherapy is one of the common 

treatment modalities for cancer. The 

approach of radiation therapy is to 

minimize radiation damage to normal 

tissue, while maximising radiation 

exposure to tumor tissue (Weiss et al., 

1992). However in practice, normal 

tissue damage occurs during radiation 

therapy and therefore it is necessary to 

protect normal tissue with the help of 

external agents. Radioprotectors are 

therefore developed and even after 

several years of research, the only 

clinically acceptable radioprotector till 

date is amifostine, an aminothiol, with 

the active group of RSH (Andreassen et 

al., 2008). Since selenium belongs to the 

same group as sulphur in the periodic 

table, selenium compounds both in 

inorganic and organic forms have been 

tested for radioprotection. It has been 

reported that radiotherapy significantly 

reduces selenium levels (Eroglu et al., 

2012). Sodium selenite was the first 

selenium compound tested for 

radioprotection in mice. When 

administered intraperitoneally before 

(–24 h and –1 h) or shortly after (+15 

min) irradiation, it increased the thirty-

day survival of mice irradiated at a lethal 

dose of 9 Gy (Weiss et al., 1992). 

Selenite was also effective when 

administered in combination with 

vitamin E before γ-irradiation and 

prevented radiation induced reduction in 

levels of antioxidant enzymes in mice 

model. In these models, sodium selenite 

supplementation increased the activity of 

serum GPx and reduced the therapy 

induced oxidative stress. Selenite has 

also been reported to exhibit 

radioprotection in normal fibroblast cells, 

but not in head and neck carcinoma cells. 

Effect of selenite supplementation in 

cancer patients undergoing radiotherapy 

for gastrointestinal, breast, lung, larynx, 

head and neck, non-Hodgkin lymphoma, 

brain, prostrate and gynaecological 

cancers was studied (Lippman et al., 
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2009; Klein et al., 2011). Sodium selenite 

was administered orally in the dose range 

of 200–500 μg daily or 1000 μg daily by 

infusion. Based on the results from 16 

clinical trials, it was concluded that 

selenium supplementation improved the 

general condition of the patients and at 

the doses employed, selenium toxicity 

was not observed, and did not decrease 

effectiveness of radiotherapy (Puspitasari 

et al., 2014).

A few organoselenium compounds 

like selenourea, selenocysteine, seleno-

xanthene, and selenomethionine, have 

also been examined for radioprotection 

using in vitro and in vivo models. 

However these agents did not show 

promising activity, except seleno-

methionine, which significantly 

increased the 30-day survival of mice 

irradiated at lethal doses of 9 and 10 Gy 

(Weiss et al., 1992). It was equally 

protective when administered at 24 h, 1 h 

and 15 min prior to γ-irradiation. 

However, when selenomethionine was 

provided in the diet as selenous yeast 

protection against acute or chronic 

radiation exposure was not observed. 

Both selenite and selenomethionine 

showed remarkable chemo-preventive 

activities in human clinical trials, the 

former exhibiting better activity. Ebselen 

has also been tested for radioprotection 

in mice. The results indicated that 

ebselen administration for 14 days at a 

daily dosage of 10 mg/kg body weight 

before whole body irradiation at 8 Gy 

provided substantial protection (60%) 

against mortality and oxidative damage 

(Tak and Park, 2009). Thus results 

reported from various laboratories 

support that selenium compounds have a 

potential as radioprotectors. Since 

selenium in organic form exhibits lower 

toxicity, than in inorganic form, 

extensive research on modulation of 

radiation induced changes by new 

organoselenium compounds is required. 

Our group has also contributed in this 

research area. After evaluating a number 

of in-house synthesized organoselenium 

compounds like selenoethers, diselenides 

and cyclic selnolanes, 3′-3′ diseleno-

dipropionic acid (DSePA (Fig. 1) was 

identified as a lead radioprotector. It is a 

water soluble derivative of seleno-

cysteine, synthesized in our laboratory. It 

was shown as an effective free radical 

scavenger, anti-hemolytic and GPx 

mimic (Kunwar et al., 2007). The 

compound was also nontoxic in normal 

cells and maximum tolerable dose 
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(MTD) in mice was estimated as ~88 

mg/kg body weight for intraperitoneal 

mode of administration (Kunwar et al., 

2010). The radio-protective ability of 

DSePA was evaluated in BALB/c mice, 

wherein the administration of DSePA (2 

mg/kg/day for 5 consecutive days) prior 

to whole body irradiation (10 Gy) led to 

35% increase in the number of mice 

surviving up to 30 days. Our results 

demonstrated DSePA treatment to 

prevent oxidative damage (such as lipid 

peroxidation and DNA damage), 

apoptosis and inflammatory response in 

radiosensitive organs like hematopoietic 

and gastrointestinal system (Kunwar et 

al., 2010; 2011). Since toxicological 

evaluation is a prerequisite for any 

compound to be proposed for clinical 

application, DSePA was investigated in 

detail for the same in Chinese Hamster 

Ovary cells. The results of this study 

indicated that DSePA treatment on its 

own did not induce toxicity, but 

prevented radiation induced genotoxicity 

and subsequent cytotoxicity in model 

cellular systems (Chaurasia et al., 2014). 

DSePA also protected against the 

depletion of endogenous antioxidants in 

hepatic tissue of irradiated mice. In line 

with these observations, DSePA 

improved the 30-day survival of the 

irradiated mice by 35%.

Late lung tissue responses like 
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pneumonitis and fibrosis are the serious 

dose-limiting side effects of thoracic 

radiotherapy used in several 

malignancies affecting organs in the 

thorax area. Encouraged by the 

preliminary results on DSePA, we 

showed that administration of DSePA 

during the post irradiation period at a 

similar dosage (2 mg/kg/three days in a 

week) delayed the thoracic radiation (18 

Gy) induced pneumonitis response in 

C3H/HeJ mice (Kunwar et al., 2013). 

The DSePA treated mice had 

significantly reduced levels of lipid 

peroxidation and inflammatory cell 

influx in the lungs and increased GPx, 

compared to mice receiving only 

irradiation. Further pharmacokinetic 

studies of orally administered DSePA in 

different organ systems of tumor bearing 

mice showed maximum bioavailability of 

DSePA in lungs followed by kidney, liver 

and intestine; while, that in the tumors 

was significantly low (Gota et al., 2015). 

Hence, the preclinical investigations are 

extended to develop DSePA as oral 

supplemented lung radioprotector for 

thoracic radiotherapy. The studies related 

to DSePA are summarized in Fig. 2.

Pro-oxidant Effects of Selenium and 

Use in Cancer Therapy 

Similar to several trace elements, 

selenium also plays a dual role. It is an 

antioxidant at low concentrations (< 200 

µg/per day) and acts as a pro-oxidant at 

higher concentrations (> 200 µg/per day) 

(Fairweather-Tait et al., 2011; Lee and 

Jeong, 2012). The antioxidant function is 

mainly through selenoproteins, which 

maintain the intracellular redox 

homeostasis and thereby preserve the 

normal physiological processes in the 

cell; while at high concentrations, it 

becomes a source of ROS. The pro-

oxidant behaviour at high concentration 

suggested selenium as a probable anti-

cancer drug. Several researchers studied 

the anticancer effects of selenium 

compounds. The pro-oxidant effect of 

selenium was correlated with well-

established growth inhibiting and 

cytotoxic activities through cellular 

proteins like AP-1, NF-kB, P53 and 

protein kinase C under in vivo conditions 

(Brozmanová et al., 2010; McKenzie et 

al., 2002). The effects are more 

pronounced in malignant cells than 

normal cells, indicating potential 

candidates for anticancer agents 
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(Fernandes and Gandin, 2015; Orian and 

Toppo, 2014). 

Both inorganic and organic selenium 

compounds have been evaluated for 

anticancer activity. Sodium selenite 

showed significant cytotoxicity in 

micromolar concentrations in a variety of 

cancers cells from different organs such 

as lung, prostrate, cervix, ovary and 

colon (Brozmanová et al., 2010; 

Fairweather-Tait et al., 2011). It was also 

effective against drug resistant cells and 

enhanced efficacy of other cancer drugs 

like 5-fluorouracil, oxaliplatin and 

irinotican in in vivo models. However 

there were some reports indicating 

genotoxicity of selenite (Nogueira and 

Rocha, 2011). A recent clinical study in 

34 cancer patients was reported. The 

patients received first line chemotherapy, 

followed by selenite treatment daily for 

five days over two or four weeks. The 

results concluded that sodium selenite is 

safe and tolerable when administered up 
2to 10.2 mg/m , no major systemic 

toxicity was reported and the most 

common adverse effects were fatigue, 

nausea, and cramps in fingers. The study 

indicated that the drug was an effective 

chemotherapeutic agent which works in 

three ways, either by itself, or in 

combination with other chemotherapy 

drugs, or as a remedy for chemotherapy 

toxicity (Micke et al., 2009; Misra et al., 

2015). 

Organic selenium compounds have 

been examined for anticancer activity 

(Fernandes and Gandin, 2015). These 

include selenomethionine, methylseleno-

cysteine, selenoglutathione, seleno-

cysteine, aromatic selnides, quinozoline 

derivatives, diphenyl diselenide, ebselen, 

etc. However most of the studies were 

limited to in vitro studies and examined 

in different cancer cell lines. Several of 

them showed encouraging results but a 

lot more studies under in vivo conditions 

are necessary to explore their ability 

against cancer. Selenocysteine is the only 

compound which has been extensively 

studied and evaluated. It is a diselenide 

of the amino acid, selnocysteine (Chen 

and Wang, 2008). It has been shown to 

be effective against human melanoma, 

cervical and lung cancer cells. It also 

showed selectivity between cancer and 

normal cells, in melanoma cells, 

selenocystiene potentiated the efficacy of 

5-fluorouracil (Fan et al., 2013). 

However, it has limitation due to low 

water solubility and instability. 

It is also interesting to note that 
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