
INTRODUCTION

Induced pluripotent stem cells (iPSCs) are a 

type of adult stem cells genetically 

reprogrammed to an embryonic stem cell 

(ESC) like state. Human ESCs established in 

1998 (Thomson et al., 1998) are considered 

promising sources for cell transplantation. 

However, use of human ESCs has several 

ethical constraints that hinder its application in 

regenerative medicine. Moreover, the use of 

human ESCs for clinical application must 

overcome barriers such as immune rejection, 

tissue regeneration and teratoma formation. 

An alternative to overcome these hurdles is to 

reprogram a patient's own somatic cells to 

iPSCs (Takahashi and Yamanaka, 2006), a 

Nobel prize winning contribution pioneered 

by Yamanaka and co-workers. The authors 

demonstrated direct reprogramming of mouse 

(Takahashi and Yamanaka, 2006) and human 
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Induced pluripotent stem cells (iPSCs) have opened up a new avenue for customized regenerative 

medicine. iPSCs can be generated by forced expression of transcription factors, Oct4, Sox2, c-Myc and 

Klf4. Although reprogramming techniques are well documented, one of the major concerns has been the 

poor efficiency of reprogramming. The reprogramming efficiency can be enhanced using various chemical 

compounds and vector systems. However, low reprogramming efficiencies and use of viral based vector 

systems limit clinical application of iPSCs. microRNAs (miRNAs) are extensively studied due to their critical 

role in numerous biological activities like cell cycle regulation, growth control and apoptosis. Discovery of 

embryonic stem cell (ESC) specific unique miRNAs, encouraged researchers to study contribution of 

miRNAs towards embryonic stem cell development, differentiation and somatic cell reprogramming (SCR). 

Depletion of mouse embryonic fibroblast (MEF) enriched miRNAs like miR-29a, miR-21 and let-7, are 

necessary to enhance reprogramming. Furthermore, up regulation of miR-200, miR-106a/b miR-120, miR-

93 miR-301, miR-17, miR-721, miR-29b is required for mesenchymal-to-epithelial transition (MET), a 

critical initial event during the generation of iPSCs from fibroblasts. The expression of embryonic stem cell 

specific miRNAs like miR-290/miR-302 cluster, miR-367/miR372 is crucial to maintain pluripotent status of 

iPSCs. In this review, we discuss contribution of miRNAs to generation of iPSCs, their defined role in 

maintenance of pluripotent state, transcriptional regulatory networks and epigenetic factors to modulate 

reprogramming.
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fibroblasts (Takahashi et al., 2007) to a 

pluripotent state, generating induced 

pluripotent stem cells (iPSCs). The generation 

of iPSCs revolutionized regenerative 

medicine research by introducing a method to 

supply an adequate number of patient-specific 

p l u r i p o t e n t  c e l l s  f o r  t h e r a p e u t i c  

transplantation, thus obviating the need to use 

human embryos. 

The generation of iPSCs by Yamanaka and 

colleagues was achieved by overexpressing 

important pluripotent transcription factors, 

initially in mouse (Takahashi and Yamanaka, 

2006), followed by human fibroblasts using 

retroviral system. The factor comprised Sex-

determining region Y HMG box 2 (Sox2), 

Krüppellike factor 4 (Klf4), Octamer binding 

transcription factor 4 (Oct4), and myc 

myelocytomatosis viral oncogene homolog (c-

Myc), are referred as the 'Yamanaka factors' 

(OSKM) (Takahashi et al., 2007). Briefly, Oct-

4 and Sox-2 are transcription factors, for 

maintaining the pluripotency of stem cells 

(Chen and Daley, 2008). c-Myc plays a major 

role in early reprogramming stages and 

e n h a n c e s  g e n e r a t i o n  o f  p a r t i a l l y  

reprogrammed cells (Koche et al., 2011; 

Schmidt and Plath, 2012). Direct interaction of 

Klf4 with pluripotent genes, Oct4 and Sox2, is 

critical for somatic reprogramming (Wei et al., 

2009). Thomson and colleagues used another 

combination of reprogramming factors viz., 

Oct-4, Sox-2, Nanog (homeobox protein 

Nanog) and Lin-28 (mRNA binding protein 

expressed in embryonic stem cells) (Yu et al., 

2007). Such genome integrating viral vectors 

produce mutagenic lesions that are potentially 

tumorigenic or influence differentiation 

potential. Therefore, several approaches have 

been developed to generate novel, non-

integrating methods for iPSC generation. 

Recent studies have indicated that iPSCs can 

be obtained with virus-free, expression 

plasmid or PiggyBac transposons (Jia et al., 

2010; Kaji et al., 2009; Malik and Rao, 2013; 

Narsinh et al., 2011; Woltjen et al., 2009). 

Gonzalez and colleagues (2010), generated 

iPSCs from mouse embryonic fibroblasts 

using polycistronic construct co-expressing 

Oct-4, Sox-2, Kfl4 and c-Myc. However, 

several rounds of transfection were necessary 

to maintain expression of transgene at the level 

required to generate iPSCs (Gonzalez et al., 

2009). The reprogramming efficiency was 

significantly lower than using the viral vector 

systems. Subsequently, modified expression 

plasmid based technique used a polycistronic 

non-viral minicircle plasmid vector to 

genetically reprogram human adult adipose 

derived stem cells (Jia et al., 2010). The 

integration free human iPSCs generated by 

this technique indicated reprogramming 

efficiency of approximately 0.005%, much 

lower than integrating viral based method. 

Further, introduced sequences employed in 

these approaches, could integrate into the 

genome as DNA constructs. The safety issue 

of iPSCs led to the use of protein based 
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methods for generation of pluripotent stem 

cells. Zhou et al. (2009), for the first time, 

reported generation of protein induced 

pluripotent stem cells (pi-PSCs) from mouse 

embryonic fibroblasts using recombinant cell 

penetrating reprogramming proteins. A 

protein transduction domain, poly-arginine 

fused to the c-terminus of Yamanaka factors 

(OSKM) in order to obtain recombinant 

proteins that can penetrate across the plasma 

membrane of somatic cells. The approach 

significantly improved reprogramming 

efficiency (Zhou et al., 2009). However, the 

procedure involved is technically challenging 

(Kim et al., 2009a; Wang et al., 2013). 

Embryonic stem cells possess a unique set of 

microRNAs (miRNAs) (Houbaviy et al., 

2003; Suh et al., 2004), with a crucial role in 

embryonic development and absence of the 

miRNAs impede cell proliferation and 

differentiation (Kanellopoulou et al., 2005; 

Murchison et al., 2005). Thus, miRNA 

302/367 cluster is highly expressed in ESCs 

and downregulated in  cell differentiation, 

encouraging study of the role of miRNA 

302/367 cluster in reprogramming (Lin et al., 

2011; Miyoshi et al., 2011; Subramanyam et 

al., 2011; Zhang et al., 2013). Numerous 

miRNA-mediated iPSCs lines have been 

derived from mouse fibroblast, human skin 

and dermal fibroblasts using only miR302 

cluster or combination of numerous ESCs 

specific miRNAs. A key feature in ensuring 

effective reprogramming is epigenetic 

remodeling. The crucial role of miRNAs in 

regulating SCR and various approaches using 

miRNAs for reprogramming are discussed.

Biogenesis of miRNAs

miRNAs belong to a class of endogenous, 

single stranded, small non-coding RNAs of 

19 22 nucleotides, derived from a 70-–

nucleotide precursor (Bartel,  2004; 

Lakshmipathy and Hart, 2008). miRNAs 

regulate expression of target genes by at least 

two mechanisms  translational inhibition or –

by promoting degradation of mRNAs (Krol et 

al., 2010). miRNAs were initially discovered 

in Caenorhabditis elegans (Lee and Ambros, 

2001) and subsequently studied in green algae, 

viruses, plants and mammalian cells 

(Griffiths-Jones et al., 2008; Odling-Smee et 

al., 2007; Pentimalli et al., 2007). miRNAs act 

as key regulators of processes including 

developmental timing, patterning, growth 

control, apoptosis and tumorigenesis (Choi et 

al., 2013; Farazi et al., 2011; Gangaraju and 

Lin, 2009; Ivey and Srivastava, 2010; Lima et 

al., 2011; Subramanyam and Blelloch, 2011; 

Zhao and Srivastava,  2007). miRNAs play a 

crucial role in maintenance of  stem cell 

pluripotency (Jia et al., 2013; Heinrich and 

Dimmeler, 2012) and critically regulate stem 

cell fate decisions, including self-renewal and 

differentiation into specific lineages (Guo et 

al., 2011).

In mammals, the biogenesis of miRNAs 

and their mechanism of action have been well 
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characterized (Carthew and Sontheimer, 2009; 

Huntzinger and Izaurralde, 2011). The miRNA 

canonical processing pathway, utilizes a 70-

nucleotide primary miRNA (pri-miRNA) 

transcript which gets processed into stem loop 

precursor miRNA (pre-miRNA) by Drosha-

DGCR8 enzyme complex in the nucleus 

(Carthew and Sontheimer, 2009). In the 

noncanonical pathway, pre-miRNA is 

generated from small introns also called 

mirtrons by alternative splicing and a 

debranching enzyme that generates a short 

hairpin, for processing by Dicer. This pathway 

circumvents requirement of the Drosha-

DGCR8 complex that is required in the 

canonical pathway. In both cases, the pre-

miRNA hairpins are translocated in the 

cytoplasm by exportin 5 where they are 

processed to mature miRNAs. In the 

cytoplasm, the ribonuclease type III, Dicer 

cleaves selectively the terminal loop of 

precursor to generate approximately 19 22 –

nucleotide mature miRNA/miRNA* duplex 

(Kim, 2005). Subsequent to Dicer processing, 

one of the two strands of the duplex, derived 

from both canonical and noncanonical 

pathways, is incorporated into the miRNA- 

inducing silencing complexes (miRISCs), 

through its interaction with one of the member 

of the argonaute (Ago) family. Ago class 2 

protein is the only mammalian protein capable 

of directly cleaving the complementary target 

of mRNAs. Hence, miRISC silences the 

expression of target genes predominantly 

through a posttranscriptional repression, and 

the silencing of specific targets is dependent 

on a base-pairing interaction between the 

incorporated miRNA and the target (Krol et 

al., 2010). It is postulated that approximately 

1–5% of genes in animals encode miRNA and 

miRNAs target approximately 10 30% –

protein coding genes (Krol et al., 2010).

The recent high throughput next 

generation massively sequencing (NGMS) 
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Figure 1: Expression of miRNAs during iPSCs generation. MEF enriched miRNAs downregulate at early stage. 

Simultaneously miRNAs that positively regulates MET and pluripotent state upregulate. Somatic cells in early stage and 

late stage of reprogramming show expression patterns of miRNAs that closely resemble somatic cells (fibroblasts) and 

embryonic stem cells, respectively. Abbreviations  MEFs: Mouse embryonic fibroblasts; MET: Mesenchymal-epithelial –

transition; ESCs: Embryonic stem cells; miRNA: microRNA.
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technology has been used to identify numerous 

miRNAs.  These  technologies  have  

modernized genomic research, allowing many 

mammalian miRNAs to be identified and 

deposited   in   miRBase (www.mirbase.org). 

Till date, 24,521 entries of hairpin precursor 

miRNAs, with 30,424 matured miRNA 

products in 206 species have been recognized 

and deposited in the public miRNA database 

miRBase (Release 20.0, June 2013). Amongst 

these, 2578 miRNAs are of human origin. A 

proper prediction and validation of miRNA 

targets is essential to understand function of 

miRNAs. Computational prediction identify 

that all genes are regulated by miRNAs and 

single miRNA can target several genes. The 

analysis of miRNA predicted targets is 

performed using different algorithms like, 

TargetScan, PicTar, miRanda. Furthermore, 

validation of predicted targets can be done by 

reporter assays for testing predicted functional 

miRNAs target sites. 

m i R N A s  d u r i n g  i n i t i a l  s t a g e  o f  

reprogramming

Early phase of reprogramming includes 

expression of miRNAs that inhibit apoptosis 

and enhance cell proliferation (Fig. 1). An 

elevated level of p53 in the initial stage of 

reprogramming reduces the overall iPSCs 

formation efficiency (Sarig et al., 2010; Tapia 

and Schoer, 2010). Moreover, one of the p53 

target, cyclin-dependent kinase inhibitor p21, 

causes cell cycle arrest or favors apoptosis 

(Bodzak et al., 2008; Kawamura et al., 2009). 

An unrevealed crucial role of miR-138 in 

regulation of p53 pathway and promotion of 

iPSC generation was first reported by Dan and 

colleagues (Ye et al., 2012) (Fig. 2). Briefly, 

p53 is down regulated by miR-138 which in 

turn reduces expression of p21 and miR-34 

during somatic cell reprogramming (Choi et 

al., 2011; Ye et al., 2012). miR-34 cluster 

(miR-34a,-34b,-34c) is a barrier to 

reprogramming as it reduces expression of 

pluripotent factors like Oct-4, Nanog (Choi et 

al., 2011; Ng et al. 2014). Ye et al. (2012) 

reported that, endogenous expression of Oct4 

and Sox2 genes is relatively low and retroviral 

expression remains active in iPSCs generated 

by OSKM factors from p53-null cells. 

Moreover, ESC-like morphology cannot be 

maintained after passage five. Alternatively, in 

this study, the morphology of miRNA-

mediated reprogrammed iPSCs (138-iPSCs), 

was similar to that of mouse ESCs and were 

maintained for more than 20 passages in vitro. 

Additionally it was reported that p53 binds to 

the miR-145 promoter and activates its 

expression (Sachdeva et al., 2009; Suh et al., 

2011) .  miR-145  known to  induce  

differentiation of ESCs by suppressing the 

expression of reprogramming factors, Oct4, 

Sox2 and Klf4. Hence, miR145-p53 axis is a 

roadblock to reprogramming (Liu et al., 2012; 

Xu et al., 2009) (Table 1 and Fig. 2).

miRNAs expressed in mouse embryonic 

f ib rob las t s  (MEFs)  in t e r f e re  wi th  
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reprogramming efficiency (Melton et al., 

2010). Depletion of MEFs enriched miR-29a 

and miR-21 result  in an enhanced 

reprogramming efficiency mediated by 

regulation of ERK1/2 and p53 pathways (Yang 

et al., 2011; Yang and Rana, 2013). The 

depletion of miR-29a using inhibitors, 

decreased p53 protein levels by elevating p85α 

and CDC42 expression  (Yang et al., 2011), 

and depletion of  miR-21, decreased ERK1/2 

phosphorylation (Yang et al., 2011). Further, 

c-Myc has shown to repress miR-29a and miR-

21 to promote reprogramming (Yang et al., 

2011) (Table 1).

Let-7 family of miRNAs (Let-7a1, -a2, -

a3, -b, -c, -d, -e, -f,1,-f2, -g, -i) are abundantly 

expressed in MEFs (Pasquinelli et al., 2000; 

Reinhart et al., 2000) (Fig. 1), leading to 

investigation of the role of let-7 family of 

miRNAs in reprogramming.  The miRNAs are 

pluripotent silencing miRNAs as they inhibit 

expression of a number of pluripotent 

regulators, including Sall4, Lin-28b, Hmga2 

and c-Myc, n-Myc (Kim et al., 2009b; Melton 

et al., 2010; Park et al., 2007; Rybak et al., 

2008; Sampson et al., 2007). c-Myc inhibits 

expression of let-7 through Lin-28b 

transactivation and depletion of let-7 elevates 

reprogramming efficiency four fold with OSK 

reprogramming factors (Melton et al., 2010). 

The let-7 family of miRNAs act as a barrier to 

r e p r o g r a m m i n g  v i a  e x p r e s s i o n  o f  

prodifferentiation genes including early 

growth response protein 1 (EGR1) (Worringer 

et al., 2013). The inhibition of let-7 with the 

OSK cocktail increases the reprogramming 

efficiency of human dermal fibroblasts (HDF) 

comparable to that with OSKM. Further let-7 

inhibit ion augments OSK mediated 

reprogramming, at least in part through 

promoting LIN-41 expression. EGR1 mRNA 

is bound and negatively regulated by LIN-41 

and blocks reprogramming. Together these 

findings delineate the role of a let-7-based 

pathway that counteracts the activity of 

reprogramming factors through promoting the 

expression of prodifferentiation genes (Chang 

et al., 2009; Worringer et al., 2013) (Table 1).

c-Myc, one of the four reprogramming 

factors, induces expression of a number of 

miRNAs that favor initiation of the early 

transitional stage (Yang et al., 2011; 2013).    

c-Myc induces repression of MEF enriched 

miRNA, miR-21 and miR-29a enhancing the 

early phase of reprogramming events (Yang et 

al.,, 2013). Furthermore, c-Myc alone can 

augment expression of miR-17`92 cluster, 

miR-106b`25 cluster  and miR106a`363 

cluster expressions (Li et al., 2011; Mendell, 

2008). Recently, He and colleagues (2014), 

reported that miR 19a/b of cluster miR17`92 

were significantly induced by c-Myc during 

initial stage, suggesting a crucial role of the 

miRNAs during somatic cell reprogramming. 

The enhancement of reprogramming by miR-

19a/19b was mediated by repressing 

expression of tumor suppressor protein, 

phosphatase and tensin homolog (PTEN), 
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causing cell cycle arrest (Weng et al., 2001). 

These results suggest that cMyc-miR-19a/b-

PTEN axis plays a crucial role in 

reprogramming human somatic cells. The 

approach circumvents the use of c-Myc, hence 

miR17`92 cluster can be used to reprogram 

somatic cells into iPSCs for clinical purpose 

(He et al., 2014) (Table 1).

miRNAs promote mesenchymal-to-

epithelial transition

An early event during iPSC generation is 

mesenchymal-to-epithelial transition (MET). 

Factors that promote MET or inhibit 

epithelial-to-mesenchymal transition (EMT) 

help in reprogramming. A prominent 

observation in early days of reprogramming is 

the transformation into cluster of cells 

resembling epitheloid morphology.  Inhibition 

of EMT occurs by suppression of transforming 

growth factor β (TGF-β) pathway (Li et al., 

2010; Miyazono, 2009). miR-106a, miR-

106b, miR-93 and miR-17 accelerate 

reprogramming by targeting TGF βII (Li et al., 

2011) (Fig. 1). Another family of miRNAs, 

miR-130, miR-301 and miR-721 enhanced 

mouse fibroblast reprogramming by reducing 

expression of homeobox transcription factor, 

Meox2 (or Gax) (Pfaff et al., 2011). Meox2 is 

associated TGFβ pathway (Valcourt et al., 

2007) (Fig. 2). miR-200 downregulates 

expression of MET barriers including ZEB1 

and ZEB2 (Burk et al., 2008; Gregory et al., 

2008;  Korpal et al., 2008) (Fig. 2). ZEB1 and 

ZEB2 (mesenchymal  markers )  a re  

transcriptional repressors of E-Cadherin and 

master regulators of epithelial polarity 

(Bracken et al., 2008). Although it is now 

known that fibroblasts can be reprogrammed 

to an ES like state, the underlying mechanism 

is not clear. He et al. (2014) reported Oct-4 and 

Sox-2 positively regulate expression of miR-

200, which in turn down-regulates 

mesenchymal marker ZEB2 through directly 

targeting the 3'UTR. ZEB2 is member of the 

ZFHX1 family of two-handed zinc 

finger/homeodomain proteins, initially shown 

as a binding partner of SMAD1 and 

SMAD2/3. Thus, miR-200s regulate 

expression of Sox-2/Oct-4 during iPSCs 

generation, and miR-200s/ZEB2 axis play 

crucial roles in Sox-2/Oct-4-initiated MET 

process during reprogramming (He et al., 

2014). During iPSCs generation, a change in 

DNA methylation pattern is essential for 

epigenet ic  remodeling and the re-

establishment of the ESCs-specific gene 

expression profile (Mikkelsen et al., 2008). In 

addition, DNA methylation leads to 

reactivation of epithelial specific markers in 

the MET process. The reactivation of 

imprinted regions, like Dlk1-Dio3 locus, is 

essential for development of fully pluripotent 

iPSCs (Liu et al., 2010).  DNA hyper-

methylation leading to silencing of Dlk1-Dio3 

locus prevents cells from becoming fully 

pluripotent iPSCs (Liu et al., 2010; Li et al., 

2010). Hence, DNA methyl transferases 
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(DNMTs) act as barriers to early stage 

reprogramming. However, its expression is 

up-regulated during later stages of iPSCs 

generation (Pawlak and Jaenisch, 2011). Guo 

et al. (2012) demonstrated that Sox2 directly 

regulates miR-29b expression during 

reprogramming and expression of miR-29b is 

essential for OSKM- and OSK-mediated 

reprogramming. miR-29b targets  Dnmt3a and 

Dnmt3b, thus enhancing expression of MET 

promoting factors, Cldn3, E-Cadherin and 

EPCAM, while suppressing expression of 

mesenchymal specific genes like Cdh2, Snail 

and Zeb1 during reprogramming events (Guo 

et al., 2012). Expression of miR-29b in  

OSKM-mediated iPSCs generation with low 

transcriptional activity of the Dlk1-Dio3 locus 

reactivates expression of miRNAs and genes 

in the imprinted region (Stadtfeld et al., 2012) 

(Fig. 2).

miR-302b (orthologous to mouse miR-

302s) and miR-372, miR-373 (orthologous to 

mouse miR-291, miR-294, miR-295) 

enhances human somatic cell reprogramming 

by increasing the kinetics of MET, by 

suppressing TGF-β induced EMT and by 

targeting epigenetic modifiers (MECP2, 

MBD2, SMARCC2) (Subramanyam et al., 

2011). In addition, miR-302 expression in 

r e p r o g r a m m i n g  l e a d s  t o  D N A  

hypomethylation and DNMT1 deficiency (Lin 

et al., 2011). In conclusion, these findings 
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Table1: miRNAs: Regulators of induced pluripotency 

microRNAs  Targets  Function in 

reprogramming  

Reference  

miR-34 cluster-miR-34a,  

miR34b, miR-34c  

Oct-4, Nanog Barriers Choi et al 2011; He et al., 2007, 

Ye et al., 2012  

miR-145  P53/ Oct-4, Sox-2,Klf-4  Barrier Liu et al. 2012; Xu et al., 2009  

miR-29a  P53 pathway  Barrier  Yang et al., 2011  

miR-21  ERK1/2 phosphorylation  Barrier Yang et al., 2011  

Let-7 family  Sall4, Lin-28b, Hmga2,  

c-Myc,  N-Myc 

Barrier Kim et al., 2009b; Melton et al., 2010; 

Park et al., 2007 Rybak et al., 2008;  

Sampson et al., 2007  

miR19a/miR19b  PTEN  Promoters He et al., 2014  

miR106a, miR106b,  

miR-93, miR-17  

TGFβII  Promoters Li et al., 2011  

miR-130,miR301,  

miR-721  

Meox1  Promoters Pfaff et al., 2011  

miR-200  ZEB1 and ZEB2  Promoter  He et al., 2014; Burk et al., 2008;  

Gregory et al., 2008; Korpal et al., 2008 

miR-29b  Dnmt3a, Dnmt3b  Promoter  Guoet al., 2013  

miR 302, miR372, miR-367  TGFβ, MECP2, 

MBD2,SMARCC2, 

NR2F2  

Promoters Hu et al., 2013; Subramanyamet al., 2011  

Mouse: miR-291a-3p,  

291b3p, 294, 295, 302a-d  

cdkn1a,Rb1, Rb2  Promoters Judson et al., 2009  

miR-138  P53 Pathway  Promoters Ye et al., 2012  

 



show that miRNAs are necessary for gene 

expression and epigenetic remodeling during 

O S K M - m e d i a t e d  s o m a t i c  c e l l  

reprogramming. Thus, it is observed that 

miRNAs are differentially expressed and 

p o s s e s s  c r i t i c a l  f u n c t i o n s  d u r i n g  

reprogramming of somatic cells. 

E S C C  r e g u l a t i n g  m i R N A s  f o r  

reprogramming

The embryonic stem cell-specific cell cycle-

regulating (ESCC) family of miRNAs 

promote reprogramming of somatic cells to 

iPSCs (Judson et al., 2009; Subramanyam et 

al., 2011). The role of ESC-specific miRNAs 

in iPSCs generation was first demonstrated by 
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Figure 2: miRNAs that modulate reprogramming along with their downstream effectors. miR-138 promotes 

reprogramming by suppressing inhibiory effects of P53 pathways. P53 induces apoptosis by promoting expression of 

cyclin-dependent kinase P21. miR-302 cluster or miR-302/367/372 has multiple targets. miR-302 suppresses 

expression of Oct-4 inhibitor, NR2F2, cluster inhibits TGF β pathway thus blocking EMT transition and augments 

expression of pluripotent genes, Oct-4, Sox-2 and Nanog by inhibiting DNMT1 thus suppressing hypermethylation. miR-

106a, miR-106b miR93 and miR17 accelerate reprogramming by targeting MET inhibitor TGF βII. Pluripotent genes, 

Oct-4/Sox-2 positively regulate expression of miR-200 which in turn down regulates transcriptional repressor of E-

Cadherin, ZEB1/ZEB2 expression. miR-29b inhibits DNMT1. miR-130, miR-301 and miR-721 cluster of miRNAs 

enhance mouse fibroblast reprogramming by reducing expression of homeobox transcription factor, Meox-2. 

Abbreviations – miRNAs: microRNAs; NR2F2: Nuclear receptor subfamily 2, group F, member 2; TGFβ: Transforming 

growth factor beta; DNMT: DNA methyltransferase; MET: Mesenchymal-to-epithelial transition; EMT: Epithelial-to-

mesenchymal transition; ZEB: Zinc finger E-box binding homeobox.
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Judson and Blelloch (2009). MEFs were 

reprogrammed by viral transfection vector 

system using transcription factors Oct4, Sox2 

and Klf4 (OSK) and miRNA-290 cluster 

mimics including miR-291 – 3p, miR-292-3p, 

miR-293, miR-294, and miR-295. The 

reprogramming efficiency enhanced with 

miR-291-3p, miR-294, and miR-295, whereas 

miR-292 and miR-293 were not effective. 

Optimum results were obtained by 

overexpressing miR-294, with increasing 

efficiency from 0.01–0.05% to 0.1–0.3%. 

These reports show that miR-294 can 

substitute for c-Myc in order to enhance 

reprogramming in presence of other 

transcription factors (OSK) (Judson et al., 

2009). Importantly, iPSCs generated without 

c-Myc will be safer for future use in clinical 

research. miR-290 (mouse), miR-372 and  

miR-302 cluster, ESCC specific miRNAs 

directly target inhibitors of cyclin-Cdk2 

pathway, thereby ensuring fast G1-S 

transition. The miRNAs has reported to 

augment reprogramming of human fibroblasts 

(Guo et al., 2014; Subramanyam et al., 2011) 

(Fig. 2 and Table 1). Bone morphogenic 

protein (BMP) is necessary for efficient 

reprogramming along with OSKM, promoting 

MET by inducing expression of miR-200 and 

miR-205 (Tehrani et al., 2010). The various 

targets of miR302/367 were revealed using 

photoactivatable ribonucleoside-enhanced 

cross-linking and immunoprecipitation 

method (PAR-CLIP). miR-302/367 promotes 

BMP signaling by targeting BMP inhibitors 

TOB2, DAZAP2 and SLAINI (Lipchina et al., 

2011)

miRNAs modulate  late  stages  of  

reprogramming

Activation of pluripotent markers occurs in 

late stages of reprogramming. miR-302/367 

regulates expression of pluripotent markers, 

Oct-4, Sox-2 and Nanog (Hu et al., 2013; 

Marson et al., 2008; Rosa and Brivanlou, 

2013). Human adipose tissue derived stem 

cells (hASCs) were reprogrammed into iPSCs 

using Yamanaka factors (Klf4, c-Myc, Oct4, 

and Sox2) with miR-302 (combination is 

referred to as ‘KMOS3’). Thus, miR-302 

blocks expression of Oct-4 inhibitor, NR2F2 

and promotes pluripotency by regulating Oct-

4 through indirect mechanism. The positive 

feedback loop represents a novel mechanism 

for inducing pluripotency status in somatic 

cells (Hu et al., 2013). Study in hESCs, 

showed that expression of NR2F2 increases 

with differentiation and simultaneously down 

regulation of Oct-4 and miR-302/367 

expression was observed (Marson et al., 

2008). The transcription factors, Oct-4, Nanog 

and Sox-2 enhances expression of miR-

302/367 by binding to its promoter region 

(Anokye-Danso et al., 2012; Marson et al., 

2008). miR-302/367 cluster indirectly 

modulates expression of multiple pluripotent 

factors by targeting several epigenetic 

modifiers leading to global genomic 
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h y p o m e t h y l a t i o n .  O f t e n ,  g e n o m i c  

hypomethylation occurs at the promoter 

region of ESCs specif ic important  

transcription factors (Lin et al., 2011). During 

somatic reprogramming, miR-302 supresses 

expression of DNA methyltransferases 1 

(DNMT1) which inhibits expression of AOF2 

(lysine specific histone DNA methylases). 

This leads to genomic hypomethylation and 

subsequently reactivation of essential 

pluripotent factors (Lin et al., 2011; Reik et al., 

2001) (Figs. 1 and 2). Tay et al. (2008) 

demonstrated that miR-134, miR-296 and 

miR-470 act as barriers to reprogrammimg by 

inhibiting  pluripotent  transcription factors.

miRNAs alone for reprogramming

The strategies currently employed for iPSC 

generation involves, ectopic expression of 

Yamanaka factors (OSKM) (Takahashi and 

Yamanaka 2006; Takahashi et al., 2007). 

Although numerous alternate approaches have 

been documented to augment iPSC 

generation, including use of signaling 

molecules, additional transcription factors and 

pharmacological molecules (Jia et al., 2010), 

the different approaches require at least one 

pluripotent stem cell transcription factor. Lin 

et al. (2011) have reported use of miRNA-302 

cluster for successful reprogramming without 

need of any transcription factor. There are four 

major  advantages in  miRNA-based 

reprogramming, compared to conventional 

methodology used for reprogramming. Firstly, 

the transfection of miRNA cluster expressing 

transgene is safe, easy and efficient for 

generating iPSCs, thus bypassing the tedious 

adeno- or retro-viral insertion of huge 

transcription factors (OSKM) into single 

somatic cell. Secondly, since the size of 

miRNA transgene is approximately 1kb the 

efficiency of transfection will be increased. 

Thirdly, generation of iPSCs by using miRNA-

based approach circumvents use of proto-

oncogenes. Several investigators have 

employed exclusively miR-302a/b/c/d or in 

combination with miR-302a/b/c/d and miR-

369 or miR-302a/b/c/d and miR200c and miR-

369 for reprogramming without oncogenes, c-

Myc or Klf-4 (Anokye-Danso et al., 2011; Lin 

et al., 2011; Miyoshi et al., 2011). Finally, the 

transfection of miRNA cluster transgene is 

done by electroporation instead of retroviral 

vector system (Lin et al., 2011). Hence, 

somat ic  ce l l s  can  be  success fu l ly  

reprogrammed without use of pluripotent 

transcription factors in the miRNA-based 

approach (Anokye-Danso et al., 2011; Lin et 

al., 2011). miRNA-based reprogramming 

approach has circumvented most of the 

problems encountered in SCR using 

conventional method. The future challenge 

will be to apply this technique to generate 

patient-specific iPSCs in a large scale with 

better quality and safety for transplantation 

therapy.
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miRNAs in regulation of  l ineage 

differentiation 

A self renewal process is normally inhibited 

during differentiation due to down regulation 

of pluripotent genes, Oct-4, Sox-2 and Nanog, 

hence resulting in a decrease of miR-290 and 

lin-28 cluster expression. A down regulation of 

lin-28 leads to maturation of let-7, resulting in 

the suppression of self-renewal promoting 

genes, hence facilitating differentiation. miR-

290 family indirectly represses let-7 in order to 

maintain pluripotent state (Guo et al., 2014). 

Depletion of miR-290 family results in 

differentiation of pluripotent stem cells. 

Bernardini et al. (2014) reported crucial role of 

miR-21 during endodermal differentiation of 

iPSCs. PTEN/Akt pathway is a direct target of 

miR-21 and augments TGF-β2 expression, 

thus promoting endodermal differentiation of 

iPSCs. Okamoto et al. (2012) demonstrated 

that miR-181a, miR-24a, miR-9-3p, miR-19b, 

miR-10b, miR-10a are important regulatory 

factors in osteoblastic differentiation of mouse 

iPSCs. Specifically, miR-124a and miR-181a 

directly targets the transcription factors Dlx5 

and Msx2. Hence, down regulation of these 

miRNAs are necessary to enhance expression 

of osteoblastic differentiation markers such as 

Rux2, Msx2 and osteopontin.

SUMMARY

Somatic cell reprogramming is a ground 

breaking discovery in the field of stem cells 

and regenerative medicine. The iPSC 

technology has opened avenues for 

personalized medicine, since patient-specific 

somatic cells can be employed. However, to 

realize the therapeutic potential of iPSCs, 

comprehension of the molecular mechanisms 

involved in pluripotency and cell fate 

decisions are critical. Despite numerous 

advancements in iPSC research, the search for 

a methodology that is safe, effective with high 

efficiency, for engineering somatic cells into a 

versatile embryonic-like state is ongoing. 

miRNA-based reprogramming methods seem 

promising for generation of iPSCs/progenitor 

cells using defined approaches, and will be 

more efficient than the conventional (Oct 

4/Sox2/Klf4/c-Myc mediated) methods. 

miRNAs are differentially expressed in an 

organized manner during the entire 

reprogramming process. A key cellular 

process, MET, is an early stage event that 

occurs immediately after forced expression of 

core transcription factors required for 

r e p r o g r a m m i n g  i n  f i b r o b l a s t s .  

Simultaneously, inhibition of EMT is a 

prerequisite for efficient reprogramming. A 

distinct set of miRNAs modulate the 

EMT/MET transitions, a critical step towards 

an altered pluripotent state. Finally, another 

distinct set of ESC specific miRNAs is 

observed, ensuring that the pluripotency 

regulatory network is maintained. miRNA-

based reprogramming methods are relatively 

new and a number of challenges have to be 

addressed including, the ideal cluster of 
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