
Genetic Markers and Evolution of 

Targeted Therapy in Cancer 

Advances in genomic technologies have 

resulted in remarkable progress in 

molecular diagnosis of cancer with 

identification of various unique genetic 

markers of pathogenic significance as 

targeted molecules. The targeted 

molecules comprise fusion genes, 

chimeric RNA, fusion/chimeric proteins, 

amplified genes, genes with point 

mutation, overexpressed/down regulated 

RNA and miRNA (Ali et al., 2010; Pavlovi 

et al., 2014; Shtivelman et al., 1985, 
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Sjogren et al., 1998). The genomic 

alterations have led to precise WHO 

classification of hematological 

malignancies resulting in differential 

diagnosis and stratification of patients for 

appropriate treatment protocols. The 

routine methods used in cancer include 

FISH, PCR, ARMS-PCR, RFLP, Real 

Time PCR, capillary electrophoresis, 

Sanger sequencing/pyrosequencing, 

microarrays for whole genome/ 

transcriptome/protein analysis, mRNA 

and methylotype analysis (Ku et al., 2013; 

Sethi et al., 2013; Staehler et al., 2012). 

Several target molecules in cancer are 

tyrosine kinases, as the tyrosine kinase 

signaling initiates molecular cascades 

leading to cell proliferation, differentia-

tion, apoptosis, migration, invasion, and 

angiogenesis in the malignant tissues. 

Hence, identification and development of 

tyrosine kinase inhibitors as therapeutic 

agents has revolutionized cancer therapy 

(Sawyers, 2002). Epidermal growth factor 

receptor (EGFR) is the first receptor 

tyrosine kinase (RTK) played an important 

role in the identification of significance of 

tyrosine kinases in cancer (Carpenter et 

al., 1978). The tyrosine kinases are 

primarily RTKs e. g. EGFRs (EGFR-1, 

EGFR-2, EGFR-3), platelet-derived 

growth factor receptor (PDGFR), 

fibroblast growth factor receptor (FGFR), 

vascular endothelial growth factor 

(VEGF) receptor, and non-receptor 

tyrosine kinases (NRTK), e. g. SRC, 

ABL1, Janus kinase. The RTKs are 

activated by ligands, epidermal growth 

factor (EGF), fibroblast growth factor 

(FGF), platelet-derived growth factor 

(PDGF) by binding to the extracellular 

domain of the receptors (Fig. 1). 

The identification of the pathogenic 

molecules led to development of inhibitors 

as targeted drugs, impacting pharmaco-

genomics and personalized medicine. 

Targeted therapy directly interacts with 

pathognomic molecule, as against the 

cytotoxic drugs that primarily kill mitotic 

cells by interfering with cell cycle. 

Targeted cancer drugs are generally 

monoclonal antibodies and small 

molecule inhibitors. Therapeutic 

monoclonal antibodies target specific 

antigens on the cell surface, such as 

transmembrane receptors, or extracellular 

growth factors, CD20, CD33, and CD52, 

present on leukemic and lympho-

proliferative cells. Molecules associated 

with the immune mechanisms led to 

monoclonal antibodies – Rituximab, 

against CD20 (Table 1) in non-Hodgkin 
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lymphoma (Silverman, 2007), and several 

monoclonal antibodies used in cancer 

treatment resulting in better prognosis 

(Fig. 1; Table 1). The monoclonal 

antibodies also target extracellular 

components of signaling pathways, 

including ligands and receptor binding 

domains blocking receptor signaling and 

downstream intracellular proteins 

involved in cellular proliferation, 

angiogenesis and invasion. 

Small molecules inhibitors penetrate 

the cell membrane interacting with 

enzymatic activity of proteins, thereby 

blocking receptor signaling and interfering 

with downstream intracellular molecules 

(Fig. 2). Several growth factor receptors 

with intrinsic tyrosine kinase activity are 

constitutively active in cancers and 

inhibition of the kinases using small 

molecule inhibitors sensitizes the tumor 

cells to apoptosis. 

RTKs are preferred key targets for 

anti-cancer drugs as aberrant activation of 

the RTKs usually result in downstream 

signaling with activation of pivotal 

cytoplasmic serine/threonine kinases 

(STKs). Small molecule cancer inhibitors 

targeting extracellular RTKs and 

cytoplasmic STKs are extensively studied 
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Figure 1: Activation of HER family receptors and signaling pathways (Adapted from: Hudis, 2007).
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(Arora et al., 2005)) Deregulated 

activation of RTKs results in increased cell 

growth and survival, and contributes to 

progression of cancer. 

Targeted cancer drugs are designated 

as per the content of basic compound like 

monoclonal antibodies that end with "-

mab", e.g., Rituximab, whereas small 

molecules end with the stem "-ib" 

indicating protein inhibitory action of 

targeted drug. For example, the small 

molecule STI-571 known as Imatinib 

(generic name) in which tinib indicated 

tyrosine kinase inhibitor (TKI). Drug with 

stem "-zom-" indicates proteasome 

inhibitors, e.g., Bortezomib. Small 
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molecule inhibitors, tyrosine kinase 

inhibitors interrupt various intracellular 

signaling pathways of tyrosine kinases 

(Table 1). 

 

Tyrosine Kinase Deregulation and 

Targeted Therapy in Hematolymphoid 

Malignancies

Chronic myeloid leukemia (CML) is a 

hematopoietic stem cell disorder 

associated with reciprocal translocation 

between chromosomes 9 (BCR) and 22 

(ABL1) juxtaposing BCR sequences to c-

ABL. c-ABL is a tyrosine kinase located at 

chromosome 9q34, resulting in 

constitutive production of fusion chimeric 

protein p210 with increased tyrosine 

kinase activity. The deregulated kinase 

activity usurps the physiologic functions 

of normal ABL enzyme by interacting with 

a variety of effecter proteins, resulting in 

deregulated cellular proliferation, 

decreased adherence of leukemic cells to 

the bone marrow stroma and a reduced 

apoptotic stimuli (Deininger et al., 2000). 

In acute lymphoblastic leukemia 

(ALL), TEL-ABL protein is constitutively 

phosphorylated due to reciprocal 

translocation t(9;12) (Hannemann et al., 

1998). Chronic myelomonocytic leukemia 

(CMML) with t(5;12) produces TEL-

PDGFRB fusion protein, leading to 

tyrosine kinase activation (Golub et al., 

1994). NPM1-ALK fusion product of 
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Figure 2: Schematic representation of activated cellular pathways in cancer and mechanism of small molecule inhibitors 

(Source: Lavanya et al., 2014).
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t(2;5) is constitutively activated in 

anaplastic large cell lymphoma (Shiota et 

al., 1995). 

Imatinib mesylate, a tyrosine kinase 

inhibitor in CML (Druker et al., 2001), acts 

via competitive inhibition at the ATP-

binding site of the BCR-ABL1protein, 

resulting in inhibition of phosphorylation 

of the downstream cascade of proteins in 

signal transduction pathways. Imatinib 

mesylate prevents BCR-ABL enzyme 

from permanent deactivation, thus 

inhibiting proliferation of leukemic cells 

and leading to apoptosis (Table 1) 

(Deshmukh et al., 2005; Druker et al., 

2001). Imatinib mesylate efficiently 

inhibits BCR-ABL kinase, blocks platelet-

derived growth factor receptor, and c-kit 

tyrosine kinase (Druker et al., 2000). 

However, about 90 kinase domain 

mutations have been identified in ABL1, 

which prevents binding of the drug and 

thus induce resistance to the drug. 

Consequently, second generation tyrosine 

kinase inhibitors, Nilotinib, Dasatinib 

(Jabbour et al., 2014; Kantarjian et al., 

2010) and Bosutinib (Khoury et al., 2012) 

were developed to overcome resistance to 

Imatinib mesylate due to kinase domain 

mutations. Second generation TKIs 

overcome resistance of Imatinib. 

HoweverT3151, “gatekeeper” mutation, 

displays resistance to all second 

generation TKIs. Ponatinib, a third 

generation TKI, has overcome resistance 

due to kinase mutation T3151 (Jabbour et 

al., 2014; O'Hare et al., 2009) (Table 1). 

In acute promyelocytic leukemia 

(APL), fusion gene PML-RARA of 

t(15;17) leads to a differentiation block in 

the abnormal promyelocyes. The targeted 

drug all-trans-retinoic acid (ATRA) leads 

to conformational change of PML-RARA 

protein followed by activation and 

regulation of RARA-responsive genes 

leading to differentiation of promyelocyes 

to granulocytes (Advani et al., 1999; 

Grignani et al., 1998). The remission rates 

were significantly high in APL patients 

treated by ATRA. However, resistance to 

ATRA was observed in 25–30% of APL 

patients (Estey et al., 2006), and arsenic 

trioxide (ATO) was found to be more 

efficient than ATRA as it induced 

apoptosis in addition to differentiation. 

Besides, translocations, epigenetic 

silencing is an important genetic alteration 

leading abnormal expression of genes 

involved in cell cycle control and 

differentiation in AML. The replacement 

of cytosine by 5-aza-cytidine, a cytidine 

analogue, acts as a block to DNA methyl 
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transferases, causing demethylation of 

DNA and consequent differentiation 

(Egger et al., 2004). Histone deacetylase 

(HDAC) inhibitors Vorinostat (Zolinza) 

and Panobinostat are additional agents for 

modulation of transcriptional repression of 

tumor suppressor proteins (Bolden et al., 

2006). 

The two most prominent mechanisms 

in Myelodysplastic syndromes (MDS), 

DNA methylation and histone acetylation 

play a role in hematopoiesis. Methylation 

is focally increased around tumor 

suppressors and other mitogen inhibitors. 

DNA methyl transferases (DNMTs) play a 

role in increased methylation and hence a 

key target for treatment of MDS (Shih et 

al., 2012). In high risk MDS, a number of 

genes associated with DNA repair, cell-

cycle control, regulation of development, 

differentiation and apoptosis are 

hypermethylated in 70% of patients. The 

critical hypermethylated genes are 

ALOX12, GSTM1, HIC1, FZD9, TET2 and 

HS3ST2 (Jiang et al., 2009). These 

hypermethylated genes are potential 

targets for demethylating agents. Patients 

with hypermethylatedTET2 showed better 

response rates (82%) on treatment with 

demethylating drug azacytidine than those 

with wild-type TET2 (45%) (Itzykson et 

al., 2011). 

JAK2 mutation has been reported in 

myloprolifertaive disorders Polycythemia 

Vera, Primary Myelofibrosis and Essential 

Thrombocythemia. JAK2 encodes an on-

receptor tyrosine kinase associated with 

signal relays for hemopoietic cell growth, 

development and differentiation 

(Neubauer et al., 1998). Ruxolitinib, a 

JAK inhibitor showed promising results in 

patients with Myelofibrosis (Harrison et 

al., 2012). 

BRAF is a potent activator of 

MAP/ERK kinase pathway associated 

with regulation of cell cycle, 

differentiation and cell survival. BRAF 

mutations have been reported in solid 

cancers and hematopoietic cancers 

(Davies et al., 2002; Holderfield et al., 

2014). The most common BRAF mutation 

is the V600E mutation (Holderfield et al., 

2014). Vemurafenib, a small molecule 

inhibitor showed anti-melanoma activity 

against the BRAF V600E mutant protein 

(Tsai et al., 2008). Hematolymphoid 

malignancies including hairy cell 

leukemia and multiple myeloma with 

BRAF V600E mutation, showed 

favourable clinical response on treatment 

with Vemurafinib (Machnicki et al., 2014) 

(Table 1). 
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Fms-like tyrosine kinase 3, CD135 

(FLT3) a tyrosine kinase receptor is 

activated when bound by the FLT3 ligand 

(FL), subsequently promoting homo-

dimerization. This switches tyrosine 

kinase activity of FLT3 followed by 

recruitment and phosphorylation of 

intracellular proteins SHC, GRB2, SHIP, 

CBL, CBLB-related protein domain, 

further leading to activation of MAP 

kinase, STAT and AKT/PI3 kinase signal 

transduction pathways. The proteins are 

transported to the nucleus regulating 

cellular proliferation, differentiation and 

apoptosis (Zhang et al., 1999). FLT3-ITD 

(Internal tandem duplication) is a common 

mutation in 15–35% AML (Stirewalt et al., 

2006) and 5–10% MDS. FLT3-ITDand 

allelic variation in patients influences 

prognosis of AML patients (Meshinchi et 

al., 2006). FLT3-TKD (Tyrosine kinase 

domain) mutation occurs in codon 835 

(D835). Sorafenib, a tyrosine kinase 

inhibitor specifically targets the leukemic 

blasts in AML (Williams et al., 2012) 

(Table 1). 

Upregulation of JAK2 in AMLc ells 

results in resistance toFLT3-TKI inhibition 

(Ikezoe et al., 2011). Second generation 

drug, Quizartinib (AC220) was potent in 

FLT3-TKI resistant cases due to 

upregulation of JAK2 (Cortes et al., 2011). 

Pacritinib (SB 1518)is another potent 

JAK2/FLT3 inhibitor, in combination with 

Pracinostat (SB939), an oral HDAC 

inhibitor, showed synergy in inducing 

remission and better survival in the 

patients (Novotny-Diermayr et al., 2012). 

Nucleophosmin (NPM1) mutations 

result in overexpression of the phospho-

protein in 27–35% of adult AML and 

40–60% of adult AML with normal 

karyotype (Falini et al., 2005). NPM1 

mutation occurs due to four base sequence 

TCTG duplication at position 956–959 in 

NPM1 gene (Falini et al., 2005). Inhibitors 

of NPM1 oligomerization such as 

NSC348884 increase apoptosis when 

exposed to the ATRA plus cytarabine 

combination (Balusu et al., 2011). 

CCAAT/enhancer binding protein 

alpha (CEBPA) protein is a key regulator 

of granulocytic differentiation 

(Rosenbauer et al., 2007). Hence, CEBPA 

mutations induce proliferation and block 

differentiation of myeloid lineage. CEBPA 

mutation occurs due to N-terminal frame-

shift mutations and secondly due to C-

terminal in-frame insertions or deletions. 

CEBPA mutations frequently (70%) occur 

in AML patients exhibiting a normal 

karyotype. AML patients with a normal 
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for targeted therapy. AML patients treated 

with Bcl-2 antisense oligonucleotide 

based therapy inhibit Bcl-2 over-

expression, promote apoptosis and reduce 

drug resistance (Marcucci et al., 2003). 

Targeted Therapy in Solid Tumors

According to National Comprehensive 

Cancer Network (NCCN) guidelines, 

several molecular markers have been 

identified as targets for therapy in solid 

tumors. The molecular markers include 

HER2 (ERBB2) amplification in breast 

cancer, K-RAS and BRAF mutations in 

colorectal cancer, and BRAF v600 

mutation in melanoma, EGFR 

mutation/ALK/rearrangement in non-

small-cell-lung-cancer (NSCLC), and c-

KIT in gastrointestinal stromal cancer. The 

following section discusses the markers in 

specific cancers. 

Molecular Markers and Targeted 

Therapy in Lung Cancer

Lung cancer is the most common cancer in 

men globally with about 15% five year 

survival rates. Based upon various driver 

mutations, NSCLC is stratified based on 

the molecular lesions as NSCLC with K-

RAS mutation, EGFR mutation, 

echinoderm microtubule-associated 

karyotype and CEBPA mutation in the 

absence of FLT3 show favorable 

prognosis (Green et al., 2010). 

C-KIT, a stem cell gene, encoding 

tyrosine kinase, demonstrated c-KIT 

mutations in AML patients with core 

binding factor rearrangement. Upon 

binding of the ligand stem cell factor, to c-

kit, phosphorylation of several cyto-

plasmic proteins occur followed by 

activation of downstream MAP kinase, 

JAK/STAT, and PI-3 kinase pathways 

(Linnekin, 1999). Mutations in c-KIT 

receptor result in constitutive phospho-

rylation and activation of the receptor in 

absence of the ligand. Mutations in c-KIT 

and FLT3 genes are associated with 

unfavorable prognosis in patients with 

t(8;21). In particular, patients with c-KIT 

mutation have been reported to have a 

higher incidence of relapse (80% versus 

13. 5%) (Pascka et al., 2004). In vitro 

studies have shown sensitivity to Imatinib 

for a mutation in exon 8 and exon 17. 

APcK110, with potent proapoptotic and 

antiproliferative activities has shown 

promising results in AML cell lines and 

primary samples (Faderl et al., 2011). 

BCL2, an anti-apoptotic protein, is 

overexpressed in hematological 

malignancies and is a possible molecule 
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protein like 4-anaplastic lymphoma kinase 

(EML4-ALK) mutation, herceptin 2 

(HER2)mutation, v-raf murine sarcoma 

(BRAF) mutation, mesenchymal epithelial 

transcription factor (Met) mutation, 

protein kinase B (PKB/AKT1), 

phosphatidylinositide 3 kinase catalytic 

subunit (PI3KCA) mutation (Pao et al., 

2011). 

EGFR plays a critical role in cell 

proliferation, angiogenesis, and inhibition 

of apoptosis. EGFR mutation is reported in 

10% of NSCLC in US, and 35% in Asian 

population (Pao et al., 2011). The EGFR 

mutation is observed in less than 5% 

squamous cell cancer patients and 15–20% 

adenocarcinomas including females 

(never smokers) (Pao et al., 2010). EGFR 

mutations are located in the kinase domain 

at exons 18–21 (Kosaka et al., 2009). 

EGFR amplification has also been 

reported in NSCLC patients and 

associated with bad prognosis. Patients 

stratified as NSCLC with EGFR mutation 

are effectively treated with targeted 

therapy Erlotinib or Gefitinib targeted to 

the deregulated EGFR (Lazarus et al., 

2013) (Figs. 3 and 4) (Table 1). EGFR TKI, 
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et al., 2012).
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a small molecule inhibitor, therapy also 

shows better response to patients with 

EGFR amplification as compared with 

EGFR mutation. 

An additional molecular lesion in lung 

adenocarcinomas is the point mutation in 

K-RAS gene, codon 12 or 13 (Knickelbein 

and Zang, 2015). EGFR mutation activates 

RAS signaling pathway downstream, 

hence patients with K-RAS mutation are 

resistant to EGFR TKI (Raponi, 2008). 

ALK encodes a tyrosine kinase 

receptor normally expressed in selected 

neuronal cell types. ALK-EML4 

rearrangementtranslocation and balanced 

translocations retain ALK kinase domain 

with constitutive activation of tyrosine 

kinase, leading to transformation of cells 

(Soda, et al., 2007) (Fig. 4). In Lung 

cancer, ALK rearrangement is detected by 

FISH with an ALK break-apart probe 

(Soda et al., 2007). Lung cancer patients 

with EML4-ALK translocation show 

sensitivity to TKI inhibitor Crizotinib 

(Shaw et al., 2011). However, resistance to 

the targeted therapy has been reported in 

patients with secondary mutations in ALK 

(Ettinger et al., 2012; Sasaki et al., 2011). 

FGFR1, Fibroblast growth factor 

receptor 1 encodes a member of the FGFR 

tyrosine kinase family, with a critical role 

in cell development. FGFR1 is 

deregulated either by point mutation, 

translocation or amplification (Turner et 

al., 2011). Preclinical trials with FGFR1 

inhibitors have shown encouraging results 

in lung cancer (Weiss et al., 2010). FGFR1 

amplifications are also observed in 20%in 

smokers with squamous cell sarcoma. 

K-RAS Mutations and Targeted 

Therapy in Colorectal Cancer

KRAS is a membrane bound GTPase, 

active in the GTP-bound form and inactive 

when GDP-bound. KRAS activity 

mediates a cascade of intracellular 

signaling events initiated by the ligand-

receptor binding of RTKs, including 

EGFR (Downward et al., 2003). EGFR 

Figure 4: EGFR mutation, EML4-ALK translocation and 

Signaling (Source: Wu et al., 2012).
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upon binding to its ligand is auto-

phosphorylated creating a docking site for 

the adaptor protein growth factor receptor 

bound protein 2 (GRB2), resulting in 

activation of KRAS GTP, which further 

stimulates downstream signaling 

pathways, RAF/MEK and PI3K (and 

phosphoinositide-3 kinase)/AKT 

controlling cell growth and survival 

(Downward et al., 2003) (Fig. 4). K-RAS 

mutations resulting in constitutive 

activation of RAS with expression of RAS 

proteins are reported in 20–25% of several 

human tumors including pancreatic cancer 

with K-RAS mutation in 90% (Downward 

et al., 2003). The potent transforming 

mutations are detected in codons 12 (82% 

of K-RAS mutations) and 13 (17%) in exon 

2 of the K-RAS gene (Wang et al., 2010). 

K-RAS gene mutations predict outcome of 

treatment with anti-EGFR antibodies in 

advanced colorectal cancer (CRC). 

Cetuximab, a human–mouse chimeric 

IgG1 monoclonal antibody, EGFR-

targeted agent approved for the treatment 

of colorectal cancer (Jonker et al., 2007) 

(Fig. 3), and Panitumumab are commonly 

used in CRC therapy (Heinemann et al., 

2013). Bevacizumab (Avastin), 

Ramucirumab (Cyramza), and Ziv-

aflibercept (Zaltrap) are drugs used for 

colon cancer that target VEGF (Douillard 

et al., 2014). These drugs are combined 

with chemotherapy to treat advanced 

colon cancer (Table 1). Farnesyl 

transferase inhibitors (FTIs) are small 

molecule inhibitors that selectively inhibit 

farnesylation of a number of intracellular 

substrate proteins such as RAS, an 

additional approach to target K-RAS 

mutations (Gysin et al., 2013). However, a 

comprehensive understanding of RAS 

mediated signal transduction feedback 

loops, tumor heterogeneity and 

mechanisms of downstream targets of K-

RAS gene on CRC is needed for optimal 

use of the monoclonal antibodies, small 

molecular inhibitors to K-RAS 

abberations. 

HER2 Marker and Targeted Therapy in 

Breast Cancer

HER2 amplification has been observed in 

20% invasive breast carcinomas, and is a 

poor prognostic marker with an increased 

risk of disease progression, recurrence of 

disease with poor survival (Andrulis et al., 

1998). FISH is an efficient tool for 

detection of HER2 amplification. HER2 

encodes a transmembrane tyrosine kinase 

receptor in the EGFR family. HER2 

stimulates growth factor signaling 
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pathways such as PI3K–AKT–mTOR 

pathway (Fig. 1). Trastuzumab 

(Herceptin), a humanized, recombinant 

monoclonal antibody that binds to the 

extracellular domain of HER2 is an 

efficient targeted therapy (Vogel et al., 

2002) (Fig. 3). Trastuzumab selectively 

blocks ligand independent HER2–HER3 

dimerization and proteolytic cleavage of 

the extracellular domain of HER2 

resulting in downregulation of PI3K 

pathway signaling and downstream cell 

cycle protein cyclin D1 (Junttila et al., 

2009). Herceptin resistance is seen in 

several breast cancer patients with 

mutational activation of P13K pathway 

through loss of PTEN, indicating PI3K-

based treatment options. Lapatinib, an 

ATP-competitive inhibitor of HER2 and 

EGFR tyrosine kinases, have shown 

efficacy in Trastuzumab resistant patients 

(Konecny et al., 2006). Pertuzumab 

monoclonal antibody binding to a distinct 

epitope on the extracellular domain of 

HER2 blocks ligand induced dimerization 

of HER2 and HER3 (Junttila et al., 2009) 

(Table 1). 

BRAF V600E mutation occurs in 60% 

melanoma patients. The mutation 

constitutively activates mitogen activated 

protein kinase (MAPK) pathway, 

promoting cell proliferation and 

preventing apoptosis (Gray-Schopfer et 

al., 2007). Hence, BRAF V600E mutation 

is considered as a promising therapeutic 

target in metastatic melanoma. 

Vemurafenib treatment in patients with 

BRAF V600mutant metastatic melanoma 

indicated that inhibition of MAPK 

pathway promoted cell proliferation and 

prevented apoptosis (Flaherty et al., 

2010). Vemurafenib induces clinical 

responses in 50% patients with BRAF 

V600 mutant metastatic melanoma. 

Vemurafenib and Dabrafenib are effective 

targeted drugs for melanomas with BRAF 

V600Emutation (Kim et al., 2014) (Table 

1). 

CONCLUSION

A continuous research efforts by various 

genomic technologies made remarkable 

progress in the discovery of genetic 

markers which have diagnostic as well as 

prognostic significance in hemato-

lymphoid malignancies and solid tumors 

as well. Driver mutations and their 

mechanism of actions disclosed role of 

various oncogenic pathways that 

contributed significantly in the 

development of effective inhibitor 

molecules/proteins as targeted therapy. 
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