
INTRODUCTION

Stem cells, or for that matter all cells, for 

formation of viable and functional tissues, 

require interaction with their specific niche. 

The niches comprise the biochemical niche, 

including, soluble factors, cytokines, 

chemokines, growth factors and several other 

factors. Further, the mechanical niche, the 

acellular compartment, provide scaffold for 

the biochemical niche. In a natural 

environment, both these niches together play a 

crucial role in cell growth, differentiation and 

fate determination, besides a very critical role 

in functional organ/organelle formation. A 

major hurdle in the area of tissue engineering 

is to understand and simulate the complex 

niches. The primary hurdle is creating a three 

dimensional (3D) atmosphere for cell growth, 

which will allow not only mimicking tissue 

architecture, but also creating a gradient of 

biochemical components in cell–cell 

interactions. 

Our ability to artificially simulate this 

complex and the co-ordinated/regulated 

environment will be a major leap in ability to 

understand and thereby direct stem cell fate, 

propelling the cells into targeted functional 

tissue formation, the basic goal of tissue 

engineering. 

The current mini-review will focus on the 
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mechanical niche component, broadly termed 

Extracellular Matrix (ECM) component to 

simulate the natural tissue composition. The 

understanding of the biochemical fraction of 

the niche and modus of choosing a material 

close to the natural niche are vast topics, and 

thus not dealt with here. 

The advent of biocompatible polymers has 

enhanced the ability to perform grafting, 

implanting, delivery and substitution of non-

functional biological tissue with function 

reinstating artificial options. These are fast 

emerging potential alternatives to autografts 

and allografts, in short supply and carry risks 

of disease transmission. The scaffolds are used 

to engineer various soft connective tissues 

such as skin, ligament, muscle and tendon, as 

well as vascular and neural tissues. And for 

advanced cell therapies, the ECMs aid in long-

term cell culture in a 3D system, enhance 

cellular propagation and act as an efficient 

system for targeted cellular delivery.

Scaffolds

A large part of what can be achieved in tissue 

engineering is dependent on the types and 

functional abilities of the various extracellular 

matrices/scaffolds available. A multitude of 

scaffolds are currently available for cellular 

growth, cellular/non-cellular delivery, 

regeneration of damaged tissue and 

replacement of degenerated tissue. Many more 

are being added to the list every day. 

The currently available scaffolds fall 

largely into two broad categories, natural and 

synthetic; subcategorized into degradable and 

non-degradable (Dandayuthapani et al., 

2011). These properties largely depend on the 

composition, structure and arrangement of the 

constituent macromolecules, broadly 

characterized into ceramics, glasses, polymers 

and several others. Of these, natural and some 

biodegradable or non-biodegradable polymers 

are most commonly preferred for tissue 

engineering purposes, referred to as 

‘biomaterials’. Some of the naturally 

occurring polymers are silk, collagen, gelatin, 

fibrinogen, elastin, keratin, actin and myosin. 

Naturally occurring polysaccharides such as 

cellulose, amylose, dextran, chitin, and 

glycosamino glycans are most favoured for 

preparation of scaffolds/matrices due to the 

high levels of biocompatibility (Ratner et al., 

2004).

Synthetic materials often mimic the 

physicochemical and mechanical properties of 

biological tissues, thus enhancing the ability to 

stand-in for and repair damage to functional 

tissue. Besides, synthetic polymers are highly 

valued for the ability to manipulate porosity, 

tensile strength, degradation time and 

mechanical characteristics. Additionally, 

reproducibility, mass production, structural 

uniformity and long shelf life render them cost 

effective (Gunatillake et al., 2006).  Some of 

the commonly used polymers such as 

polylactic acid (PLA), polyglycolic acid 

(PGA), polylactide-co-glycolide (PLGA) and 
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polyhydroxyalkanoate (PHA) copolymers are 

most widely used polymers for tissue 

engineering (Chen et al., 2002; Ma, 2004). 

Hydrogel scaffolds are important as also array 

of polymeric scaffolds/matrices available to 

tissue engineers. Some of the natural 

hydrogels are collagen, fibrin, alginate, 

chitosan; while the synthetic counterparts 

include PLA and perfluoroalkoxy (PFA) 

derived polymers, poly(ethylene glycol) 

(PEG) derivatives and poly(vinyl alcohol) 

(PVA) (Behravesh et al., 2003; Bryant et al., 

2004; Eyrich et al.,2007; Kim et al., 2004; 

Kong et al., 2003; Schmedlen et al., 2002; 

Solchaga et al., 2002; Suh et al., 2000; Wallace 

et al., 2003). Recently, our group has 

successfully demonstrated the use of 

Puramatrix hydrogel (Becton Dickinson, New 

Jersy, USA) for creation of a 3D equivalent of 

bone marrow (BM) niche in vitro (Sharma et 

al., 2012).

Of the many classes of synthetic materials 

used, polymeric composites are fast evolving 

as in demand scaffold materials, to mimic 

ECM-like environment. Consequently, these 

serve as cell propagation sites as well as 

cellular delivery modules. These also act as the 

mechanical component of the stem cell niche, 

thereby contributing actively to tissue 

formation. 

The fabrication of successful 3D scaffolds 

is a complex phenomenon and involves special 

attention to factors such as macro/ 

microstructure, interconnectivity, surface 

charge and area, porosity and pore size, 

biocompatibility and mechanical strength. 

The ECMs most amenable to these functions 

are the electrospun matrices. These 

electrospun matrices/scaffolds allow 

flexibility of scaffold formation in the micro 

and nanometer range. The advent of 3D 

scaffolds that mimic the nano-architecture of 

biological tissues has opened up a host of 

avenues and possibilities in tissue engineering 

(Vasita et al., 2006). The mechanical 

properties and wide range of degradation 

patterns available for polymeric scaffolds are 

of great importance in the quest for nano-

tissue engineering scaffolds/devices 

(Sokolsky-Papkov et al., 2007). One of these 

nanodevices is the electrospun nanofibre 

matrix, which shows great morphological 

similarities to various biological extracellular 

matrices. These are characterized by 

continuous fibres, high surface to volume 

ratio, high porosity and manually variable 

poresize. Electrospun nanofibres may be 

tagged with various biocompatible/bioactive 

molecules, thereby increasing the possibilities 

of cellular adherence and growth. This enables 

supply of necessary chemical cues for growth 

of specific cell types. The tensile strength of 

the scaffolds allows use in cell delivery in in 

vivo experiments (Kumbhar et al., 2008). 

Most interestingly, the tensile strength of the 

scaffolds are remarkably similar to skin and 

marginally lower than human cartilage, 

demonstrating that nanofibre scaffolds are 
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candidates for implantation or for regeneration 

of cartilages (Fischer et al., 2012; Shin et al., 

2006).

The use of these biofriendly polymeric 

materials has added to the vistas for the types 

and extent of tissues regenerated, particularly 

for stem cells, given their higher requirement 

for niche regulated support. The 3D 

architecture of ECMs/scaffolds allows 

enhanced cell growth as well as tissue like 

intercellular interactions. The thickness of the 

matrix component influences cell–cell 

dynamics and eventual tissue application. As 

represented in the microphotograph, sample 

matrix 1 is thinner than sample matrix 2 

(details withheld so as to not compromise 

patent filing) and consequently shows lower 

cellular growth from d8 to d10 (Fig. 1). A 

benefit to a thinner matrix enhances the 

visualization potential. 

In context, it is evident that certain 

biological symptoms and disorders have 

benefited more than others due to the usage of 

nanofibrous and other ECMs/scaffold induced 

tissue applications. Several of the disorders 

are related to skin, bone, cartilage, liver, heart 

valves, arteries, bladders, pancreas, nerves, 

tendons, spinal cord, corneas and other soft 
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Figure 1: Light microscope image depicts two preparations of electrospun nanofiber matrices (3D systems) supporting 

varying degrees of endothelial progenitor cell (EPC) growth from day 8 to 10. Vitronectin is the standard 2D control, which 

also supports EPC growth, albeit to a markedly lesser extent.

Kanitkar and Kale



tissues (Boyan et al., 1999; Diedwardo et al., 

1999; Eaglstein et al., 1998; Germain et al., 

1999; Mayer et al., 1997; 2000; Mohammad et 

al., 2000; Oberpenning et al., 1999; 

Tziampazis et al., 1995).

Bone

Osteoporosis is induced by impaired balance 

between the activities of cellular constituents 

of the bone, osteoblasts and osteoclasts. ECMs 

facilitate formation of osteoblasts from non-

osteo lineage stem cells, such as mesenchymal 

stem cells (MSCs). Yoshimoto et al. (2003) 

successfully cultured and expanded MSCs on 

polycaprolactone (PCL) scaffolds and 

propelled them into osteogenic lineage under 

dynamic culture conditions for four weeks. 

Interestingly, cell-embedded matrices 

maintained the size and shape of the original 

scaffold (Yoshiomoto et al., 2003). Since 

osteoporosis make bones fragile, bone grafts 

are important. Mineralized polymeric 

nanof ibrous  composi tes  have been 

successfully employed as materials for bone 

grafts (Ngiam et al., 2009). Although bone 

formation is a crucial step in regeneration, it 

alone does not suffice for larger bones, such as 

femur performing crucial weight bearing 

functions. Complete regeneration of these 

bones has been a hurdle. However, 

applications of ECMS/scaffold techniques 

have made this feasible. For the purpose of 

load-bearing tissue engineering, a novel 

biodegradable nanocomposite porous scaffold 

comprising a b-tricalcium phosphate (b-TCP) 

matrix and hydroxyl apatite nanofibers has 

been developed by a method combining gel 

casting and polymer, resulting in bone 

formation with enhanced capacity for load 

bearing (Ramay et al., 2004). Recently, a new 

composite material consisting of mesoporous 

bioactive glass (MBG) and concentrated 

alginate pastes were used for fabrication of 

hierarchical scaffolds by 3D plotting. This 

scaffold structure contains well ordered nano 

channels, micropores and controllable 

macropores beneficial for bone tissue 

engineering applications and drug delivery 

(Luo et al., 2013).

Sponge techniques

Apart from the usual type of scaffolds, natural 

polymers such as silk have been tested for their 

bone-building ability. Studies on the effect of 

primary or multiple silk coating revealed 

efficacy of these natural polymers in 

improving mechanical and biological 

properties of biphasic calcium phosphate 

(BCP) scaffolds, including in vitro evaluation 

of the osteogenic response of human MSCs 

(hMSCs) on the coated scaffolds. The multiple 

silk coating proved to be a simple, yet an 

effective technique for reinforcement. This 

could also be applied to other types of ceramic 

scaffolds with similar microstructure to 

improve osteogenic outcomes (Bogush et al., 

2009; Li et al., 2013). With current 

developments in the ECM technology, it has 
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become possible to integrate ECM 

components with non-degradable synthetic 

components ,  including beads.  This  

technological advance is useful in bone 

morphogenesis. hMSCs entrapped in alginate 

hydrogel loaded with ECM coated beads, 

contributed to enhanced bone formation in 

vitro, indicating that engineered ECM may be 

employed in a minimally invasive manner to 

direct formation of bony tissue (Bhat et al., 

2013). Current techniques have also facilitated 

slow release of bone formation related 

proteins, such as bone morphology protein-2 

(BMP-2), by complexing them with various 

ECM components such as dermatan sulphate 

(DS), hyaluronic acid (HA) hydrogels. In vivo 

studies on rats demonstrated that HA-hydrogel 

delivered BMP-2 precomplexed with 

glycosamine glycans (GAGs) induced twice 

the amount of bone formation compared to 

controls (Kisiel et al., 2013).

Vascular engineering

The idea that ECM may be able to influence 

microvasculature of endothelial cells and 

promote angiogenesis is not a new one. Feng et 

al .  (1999) demonstrated that  ECM 

environment could regulate human dermal 

microvasculature and promote endothelial 

cells into higher microvessel formation (Feng 

et al., 1999). The advent of nano-fiber 

technology has amply benefited the field of 

blood vessel formation, vascular grafts etc. 

Currently, different types of stem cells are 

used for formation of blood vessels including 

MSCs and endothelial progenitor stem cells 

(EPCs). Hashi et al. (2007) used nanofibrous 

grafts for regeneration of vascular grafts and 

successfully employed the antithrombogenic 

propert ies of BM-MSCs for t issue 

vascularization. Coronary artery smooth 

muscle cells, also capable of forming blood 

vessels, have been successfully employed for 

long term vascularization using poly-L-lactic-

co-ε-caprolactone nanofibrous scaffolds 

(Dong et al., 2008 ). Cell numbers often 

demarcate the efficacy of an available graft; 

thus increasing the need for 3D scaffolds to 

enhance cellularization (Williamson et al., 

2006). Mun et al. (2012) have used 3D 

electrospun nanofiber poly-L-lactic acid 

(PLLA) matrices for small diameter vascular 

grafts, thereby enhancing functionality of the 

graft (Mun et al., 2012). The poly-

caprolactone-polyurethane (PCL-PU) 

composite scaffold was developed by wet 

spinning PCL fibres which form the luminal 

surface, then electro-spinning porous PU onto 

the back of the PCL fibres to form the vessel 

wall substitute. This was successfully used as a 

device for small diameter vascular grafts and 

showed high capability for endothelial cell 

attachment and proliferation to form a 

monolayer with strong platelet/endothelial 

cell adhesion molecule-1 (PECAM-1) 

expression and cobblestone morphology 

(Hau-Min et al., 2013).
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Nerve, tendon and spinal cord tissue 

engineering

ECMs/scaffolds have benefitted the field of 

nerve tissue engineering. Several different 

types of polymers have made their mark for 

development of nervous tissues including 

hyaluronan-gelatin, etc. Yang et al. (2004) 

developed a porous polymeric nanofibrous 

scaffold using a biodegradable polymer, 

PLLA, for in vitro culture of nerve cells. Since 

then PLLA has been widely used in tissue 

engineering for a variety of purposes besides 

nerve tissue engineering. Similar polymers 

and derivatives, such as microspheres, have 

also been deployed with advantage. 

Polyphosphoester miscrospheres or polymer 

bound natural biomaterials, have been used 

with success for sustained release of 

biologically active nerve growth factors 

leading to enhanced growth of nerve cells (Sun 

et al., 2009; Xu et al., 2002). Tendon 

neogenesis has also benefited from 

101

Biomed Res J 2014;1(2):95-107

Figure 2: Scanning electron microscopy image depicts PCG matrix supporting murine EPCs for a long term culture, 

while maintaining cellular morphology. Images of PCG matrix without EPCs (A) and with EPCs (B) are illustrated 

(Magnification 200x). Images of PCG matrix without (C) and with (D) m-BM-EPCs at day 14 in culture (magnification 

1000x).
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development of these scaffolds (Xu et al., 

2013). Spinal cord engineering has benefited 

greatly by hydrogel type of tissue infills, 

which cover the sheath and eventually 

contribute to spinal cord regeneration 

(Macaya et al., 2012).

Wound healing

The basic problem in using stem cells for 

wound healing applications, bandage style, is 

the cell loss due to flow away mechanisms, 

reducing efficacy of the transplanted cells. For 

this purpose, a matrix that can function both as 

a cell growth substrate and cell delivery 

scaffold will be most efficacious. The 

technique of electrospinning various polymers 

into nano/microfibrous scaffolds has 

revolutionized the field of wound repair using 

stem cells. In an interesting study, human 

adipose tissue derived stem cells were seeded 

onto a silk–fibrin–chitosan scaffold. The cells 

not only enhanced wound healing in a soft 

tissue injury mouse model, but also 

demonstrated differentiation into various 

lineages linked to wound healing, such as 

fibrovascular endothelial and epithelial cells 

in the restored tissue (Altman et al., 2009). 

Studies have also revealed that self assembling 

peptide nanofiber scaffolds accelerate wound 

healing in a bioengineered Human Skin 

Equivalent (HSE) tissue model that enabled 

wound re-epithelialization to be monitored in a 

tissue that recapitulates molecular and cellular 

mechanisms of repair in human skin (Lahiji et 

al., 2000). Similar studies showed successful 

results in burn wounds (Meteroja et al., 2013). 

In our laboratory polycaprolactone-gelatin 

(PCG) electrospun nanofibrous matrix is in 

use for long term and enhanced EPC culture, 

as a ‘ready-to-use’ EPC delivery scaffold for 

treatment of diabetes induced impaired wound 

healing (Fig. 2). The application of the matrix 

embedded cells enhanced the rate of EPC 

growth about four times as the controls; while 

application of the PCG embedded EPC patch 

onto wound sites in diabetic mice, enhanced 

wound healing rate significantly, indicating 

the tremendous potential of such treatments 

for similar medical conditions (Fukuda et al., 

2006).

ECM assisted co-culture systems

Cell co-culture systems are used in several 

fields of biomedical sciences. Consequently, 

advances in the techniques on the interface of 

tissue and biological engineering contributed 

to several types of tissue culture systems 

requiring co-culture, or multi-culture of 

various cell types. A simple interface system 

using chitosan was devised as early as 2000, 

for human osteoblasts and chrondrocytes 

(Nagata et al., 2002). Cartilage tissue 

engineering is a complex subject. A co-culture 

system comprising MSCs and chondrocytes 

has proved promising for development of 

other types of cells. Its benefits were recently 

harvested for creation of hypoxia, deemed to 

be beneficial for cartilage development 
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(Schneider et al., 2008). In an ingenious 

approach, Fukuda et al. (2006) created micro 

patterned cell co-cultures using two ECMs 

deposited one on top of the other. The system 

demonstrated the potential benefit of growing 

more than one type of cell(s) (Meng et al., 

2009). Collagen matrices have been known to 

retard, and perhaps increase overall longevity 

of rat pancreatic islets of Langerhans (Bakota 

et al., 2011). Our recent data (unpublished 

data, personal communication) indicated 

successful culture of three cell types, in 

varying proportions using a simple, 

electrospun nanofibrous matrix. The results 

implied promise of harvesting and harnessing 

the properties of elusive secretomes 

(unpublished data, personal communication). 

This approach emphasizes importance of 

multiple cell culture engineering over simple 

ECM regulated cultures. The approach may 

reveal new routes of stem cell and primary cell 

co-cultures. 

Cellular secretomes

Recently, it has been demonstrated that not 

only the cells, but the cellular secretomes can 

be harnessed for therapeutic purposes. 

Recently, several groups have harnessed the 

MSC secretome for treatment of cardio-

vascular disease (Wang et al., 2011). Several 

other studies follow similar patterns. Taking a 

lead from this secretome dependent 

therapeutic approach, Bakota et al. (2011) 

devised an injectable multi domain peptide 

nanofiber hydrogel as a delivery agent for 

stem cell secretome. At a concentration of 1% 

by weight, this peptide forms extensive 

nanofibrous network, resulting in a physically 

crosslinked viscoelastic hydrogel. The 

hydrogel undergoes shear thinning and 

quickly recovers 100% of its elastic modulus 

when the shearing force is released, making it 

ideal for use as an injectable material 

(Kanitkar et al., 2013). The group also used 

secretome pre-conditioned peptide nanofibers 

for renal protection following acute kidney 

injury (Ranganath et al., 2012). Contextually, 

harvesting the cell secretome is a tedious task 

typically involving collection of conditioned 

media and enrichment of active components, 

which may result in loss of several labile 

molecules like proteins and peptides. The 

nanofibrous matrices with small pore sizes 

may be employed for entrapment and easy 

harvesting of these cell secretomes with 

hydrogel-like consistency (unpublished data, 

personal communication). 

The cellular secretomes may possibly 

mimic the exact biochemical component of the 

stem cell niche and hence special efforts 

should be directed at understanding the 

composition and functionality of the 

‘secretome’. Indirectly, the artificial 

mechanical component may allow us to 'trap' 

and analyse the biochemical component. 

The current overview highlights the 

applications of various ECM/scaffold induced 

regeneration by promoting cell growth and/or 
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permit cell delivery. The examples and 

citations give an idea of the extensive 

application in the field of disease biology and 

the benefits accrued. The resourcefulness and 

efforts of the scientific community in the field 

has created a range of scaffolds, with respect to 

materials, thickness, pore size, degradability, 

shapes such as sheets, cylinders, fibres, 

micro/mega spheres etc., to choose from 

depending on the specific application. The 

future of tissue engineering has indeed got a 

new impetus with polymer scaffolds and 

multiplied the implications in biomedical 

applications.
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